作物杂志,2025, 第1期: 54–65 doi: 10.16035/j.issn.1001-7283.2025.01.007

所属专题: 杂粮作物

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

高粱Dof基因家族鉴定及表达分析

付森杰1(), 宋迎辉1, 朱灿灿1, 叶珍言1, 秦娜1, 代书桃1, 刘海霞2, 王春义1, 李君霞1()   

  1. 1河南省农业科学院粮食作物研究所,450002,河南郑州
    2长葛市农业农村局,461500,河南许昌
  • 收稿日期:2023-11-02 修回日期:2024-01-24 出版日期:2025-02-15 发布日期:2025-02-12
  • 通讯作者: 李君霞,主要从事杂粮作物研究,E-mail:lijunxia@126.com
  • 作者简介:付森杰,主要从事杂粮作物研究,E-mail:892714029@qq.com
  • 基金资助:
    中央引导地方科技发展资金(Z20221341070);河南省农业科学院自主创新项目(2023ZC014);农业农村部/财政部现代农业产业技术体系专项资金项目(nycytx-CARS-06);河南省良种联合攻关项目(2022010401);河南省农业科学院创新团队专项(2023TD036)

Identification and Expression Analysis of Dof Gene Family in Sorghum

Fu Senjie1(), Song Yinghui1, Zhu Cancan1, Ye Zhenyan1, Qin Na1, Dai Shutao1, Liu Haixia2, Wang Chunyi1, Li Junxia1()   

  1. 1Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Changge Agriculture and Rural Bureau, Xuchang 461500, Henan, China
  • Received:2023-11-02 Revised:2024-01-24 Online:2025-02-15 Published:2025-02-12

摘要:

DNA结合单锌指蛋白(DNA binding with one finger,Dof)是植物中特有的一类转录因子,参与调控植物组织分化、种子萌发、植物抗逆及代谢等生理生化过程。为鉴定并分析高粱Dof转录因子家族成员,利用生物信息学方法从全基因组水平对高粱Dof转录因子家族成员的基本基因结构、理化性质、保守基序、启动子顺式作用元件、组织特异性表达及干旱胁迫表达等进行分析。20% PEG6000模拟干旱胁迫处理豫粱10号的幼苗后,利用qPCR技术分析Dof基因家族成员响应不同时间段干旱胁迫的表达情况。结果共鉴定了30个高粱Dof基因,分布在9条染色体上,基因保守性分析结果显示,Motif1(即锌指结构)是高粱Dof基因家族中保守的蛋白质序列;其中29个基因中都含有CX2CX21CX2C保守基序,而SbDof15基因保守序列为CX20CX2C;启动子结构分析表明,Dof基因的启动子区域中含有ABA、MYB、MeJA、低温等逆境胁迫响应元件;进化树分析结果表明,高粱Dof蛋白与玉米的同源性更高,热图分析表明Dof家族成员在高粱的不同部位都有表达。qRT-PCR结果表明,高粱Dof基因家族成员可能参与高粱应对干旱胁迫的响应,不同的Dof基因成员在应对干旱胁迫时的调控机制可能不一样。

关键词: 高粱, Dof基因家族, 转录因子, 全基因组鉴定, PEG处理

Abstract:

DNA binding with one finger (Dof) is a unique transcription factor in plants, which is involved in regulating physiological and biochemical processes such as plant tissue differentiation, seed germination, stress resistance and metabolism. Using a bioinformatics approach, the basic gene structure, physical and chemical characteristics, conserved motifs, promoter cis-acting elements, tissue-specific expression, and drought-stress expression of the sorghum Dof transcription factor family members were examined at the whole genome level in order to identify and examine the members of the family. Following a 20% PEG6000 simulated drought stress treatment of Yuliang 10 seedlings, the expression of Dof gene family members in response to drought stress at various time points was examined using qPCR. Results showed that a total of 30 Dof genes were identified and distributed on nine chromosomes. The results of gene conservation analysis showed that Motif1 (zinc finger structure) was the conserved protein sequence of sorghum Dof gene family. Among them, 29 genes contained CX2CX21CX2C conserved motif, while the SbDof15 gene was CX20CX2C. The structure of promoter analysis showed that the promoter region of Dof contained ABA, MYB, MeJA, low temperature and other stress response elements. The results of evolutionary tree analysis showed that the homology of sorghum Dof protein was higher than that of maize, and heat map analysis showed that Dof family members were expressed in different parts of sorghum. The results of qRT-PCR indicated that Dof gene family members may be involved in the response of sorghum to drought stress, and different Dof gene members may have different regulatory mechanisms in response to drought stress.

Key words: Sorghum bicolor, Dof gene family, Transcription factor, Whole genome-wide identification, PEG processing

表1

高粱Dof基因的qRT-PCR扩增所用引物序列

基因Gene 登录号Accession number 上游引物序列Upstream primer sequence 下游引物序列Downstream primer sequence
SbDof-1 Sobic.001G034300 GTCGTCCAAGTCAAACTCGTC TCAGTCCGGGGAACCCTAA
SbDof-4 Sobic.001G179300 CGACTACCACCACCAGCAG CAGCTTCCAGTGCAGATCCT
SbDof-8 Sobic.001G489900 CTCATCAAGCTGTTCGGCAAG GTCTTCAGTGTCCGCAACCT
SbDof-10 Sobic.002G313800 TCCATGAACCCTGCGGTTAG TAGAAGAGCGTGGCAATGGA
SbDof-11 Sobic.002G421900 GAGCTGCGTCCCCTCG ACCCTCCGTCTTGGCTATCT
SbDof-13 Sobic.003G121400 CCTGGGATCAAGCTCTTCGG GGCGCATCGACCTTCATTTC
SbDof-24 Sobic.007G223200 ACAACTACAACACCTCCCAGC GTGTCTGTGACACCACTGGC
SbDof-25 Sobic.008G001700 TCTCAGGCTCTGGTTCCTCT CGGGAGCACATTGGGGAATA
Actin LOC110436378 TGAAGTGCGACGTGGATATTAGGA GCTGGAATGTGCTGAGAGATGC

图1

高粱Dof家族基因在染色体上的位置

表2

高粱Dof基因家族成员基本信息

基因编号
Gene code
基因ID
Gene ID
氨基酸数
Number of amino acids
基因长度
Gene length
(bp)
编码区
Coding
region
等电点
Isoelectric
point
蛋白质相对分子质量
Protein relative
molecular mass (Da)
信号肽分析
Signal peptide
analysis
SbDof1 Sobic.001G034300 435 3309 1572~2879 9.34 43 307.61 0.0031
SbDof2 Sobic.001G078700 380 1995 365~1507 9.23 38 671.80 0.0008
SbDof3 Sobic.001G166200 351 1397 94~1149 8.93 35 519.91 0.0025
SbDof4 Sobic.001G179300 385 1950 419~1576 8.34 38 461.74 0.0143
SbDof5 Sobic.001G206300 261 1535 484~1269 9.32 26 378.44 0.0026
SbDof6 Sobic.001G252800 476 2136 315~1745 6.31 49 778.02 0.0013
SbDof7 Sobic.001G420300 394 1997 298~1485 9.94 40 285.77 0.0015
SbDof8 Sobic.001G489900 424 1810 259~1533 8.65 45 170.80 0.0016
SbDof9 Sobic.002G236600 252 1348 127~1077 9.28 25 792.75 0.0109
SbDof10 Sobic.002G313800 354 2489 547~1611 8.16 34 828.74 0.0137
SbDof11 Sobic.002G421900 484 1980 137~1591 6.35 51 627.69 0.0020
SbDof12 Sobic.003G033500 235 1519 198~1142 9.90 24 113.61 0.0619
SbDof13 Sobic.003G121400 560 2222 208~1890 5.14 61 403.46 0.0005
SbDof14 Sobic.003G131100 512 2359 347~1885 9.04 54 771.55 0.0025
SbDof15 Sobic.003G253200 168 2049 1425~1940 10.27 17 251.49 0.0015
SbDof16 Sobic.003G301700 260 1645 471~1253 9.21 27 855.15 0.0011
SbDof17 Sobic.003G367100 335 1495 218~1225 4.75 35 258.15 0.0260
SbDof18 Sobic.004G254000 304 1476 235~1149 8.81 30 986.43 0.0212
SbDof19 Sobic.004G266200 295 1639 444~1331 8.51 30 934.23 0.0020
SbDof20 Sobic.004G284400 457 2244 460~1833 9.28 45 947.04 0.0002
SbDof21 Sobic.005G001500 340 1527 281~1303 9.11 36 180.21 0.0011
SbDof22 Sobic.006G182300 388 2534 696~1811 8.76 38 945.94 0.0013
SbDof23 Sobic.006G267900 224 1682 702~1376 7.59 23 265.65 0.0374
SbDof24 Sobic.007G223200 265 1502 161~1020 5.86 27 579.64 0.0062
SbDof25 Sobic.008G001700 354 1524 234~1298 9.12 38 038.01 0.0020
SbDof26 Sobic.008G136100 340 2016 610~1632 9.05 34 557.65 0.0100
SbDof27 Sobic.008G148101 275 923 96~923 9.77 28 033.91 0.0214
SbDof28 Sobic.009G014400 385 2066 428~1585 9.07 39 250.54 0.0028
SbDof29 Sobic.009G153400 366 1472 117~1217 5.68 38 488.27 0.0010
SbDof30 Sobic.009G196100 216 1909 419~1087 9.99 22 783.69 0.0014

表3

高粱Dof蛋白二级结构分析

基因号
Gene ID
α-螺旋
α-helix
(Hh)
延伸链
Extended
strand (Ee)
β-转角
β-turn
(Tt)
无规则卷曲
Random coil
(Cc)
基因号
Gene ID
α-螺旋
α-helix
(Hh)
延伸链
Extended
trand (Ee)
β-转角
β-turn
(Tt)
无规则卷曲
Random coil
(Cc)
SbDof1 12.87 8.97 4.37 73.79 SbDof16 16.92 14.23 5.77 63.08
SbDof2 26.05 10.53 5.26 58.16 SbDof17 19.10 8.96 4.48 67.46
SbDof3 23.36 13.96 7.12 55.56 SbDof18 22.37 15.13 4.93 57.57
SbDof4 33.25 11.43 4.94 50.39 SbDof19 24.75 12.88 5.08 57.29
SbDof5 26.05 11.88 5.75 56.32 SbDof20 17.94 15.10 6.13 60.83
SbDof6 17.23 9.24 3.15 70.38 SbDof21 15.88 14.41 4.12 65.59
SbDof7 17.01 12.69 5.58 64.72 SbDof22 11.34 11.60 2.84 74.23
SbDof8 13.68 8.02 1.65 76.65 SbDof23 34.38 8.48 8.04 49.11
SbDof9 11.90 17.46 6.75 63.89 SbDof24 25.28 14.34 10.19 50.19
SbDof10 36.72 9.60 6.50 47.18 SbDof25 14.41 15.54 3.95 66.10
SbDof11 13.84 7.23 1.45 77.48 SbDof26 26.47 11.76 7.94 53.82
SbDof12 13.62 15.32 10.21 60.85 SbDof27 27.64 11.64 7.27 53.45
SbDof13 13.75 6.07 2.14 78.04 SbDof28 24.16 12.47 10.91 52.47
SbDof14 19.73 8.20 3.12 68.95 SbDof29 26.23 12.84 8.47 52.46
SbDof15 30.36 6.55 4.76 58.33 SbDof30 27.78 16.20 5.56 50.46

图2

SbDof蛋白家族保守序列比对分析

图3

高粱Dof家族成员的基因结构分析

图4

高粱Dof家族蛋白保守基序分析

图5

高粱Dof基因的功能域序列分析

图6

高粱Dof家族基因顺式调控元件分析

图7

3个作物的Dof基因家族系统进化树

图8

高粱Dof基因家族成员的表达模式分析

表4

SbDof10功能互作蛋白预测

互作蛋白Interaction protein 基因描述Gene description 互作系数Interaction coefficient 氨基酸数量Number of amino acids
Sb09g006196.1 Loc8065916亚型x1,响应低温胁迫 0.695 384
Sb01g029000.1 WRKY DNA结合域超家族蛋白 0.694 346
Sb03g034780.1 发病机制相关基因转录激活因子PTI5 0.663 178
Sb01g031890.1 锌指蛋白ZAT10 0.622 253
Sb09g027800.1 转录因子MYB 0.663 289

图9

高粱Dof家族基因在干旱处理下的表达分析 “*”表示差异显著(P < 0.05),“**”表示差异极显著(P < 0.01)。

[1] 邹剑秋, 王艳秋, 柯福来, 等. 高粱产业发展现状及前景展望. 山西农业大学学报(自然科学版), 2020, 40(3):2-8.
[2] 姚茂星, 周光怡, 任明见, 等. 高粱GATA转录因子家族的鉴定和表达模式分析. 分子植物育种, 2022, 20(10):3178-3187.
[3] 杜巧丽, 蒋君梅, 陈美晴, 等. 高粱转录因子SbWRKY71基因的克隆及其在逆境胁迫下的表达分析. 核农学报, 2021, 35(7):1532-1539.
doi: 10.11869/j.issn.100-8551.2021.07.1532
[4] Li Z Y, Chao J T, Li X X, et al. Systematic analysis of the bZIP family in tobacco and functional characterization of NtbZIP 62 involvement in salt stress. Agronomy, 2021, 11(1):1-17.
[5] Yanagisawa S, Schmidt R J. Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 1999, 17(2):209-214.
[6] Cominelli E, Galbiati M, Albertini A, et al. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biology, 2011, 11(1):162.
[7] Yang J, Yang M F, Zhang W P, et al. A putative flowering- time-related Dof transcription factor gene, JcDof3, is controlled by the circadian clock in Jatropha curcas. Plant Science, 2011, 181 (6):667-674.
[8] 李娅, 丁文杰, 江海燕, 等. Dof基因家族调节植物生长发育功能的研究进展. 西北植物学报, 2018, 38(9):1758-1766.
[9] 王新亮, 彭玲, 王健, 等. 苹果Dof转录因子生物信息学及其表达分析. 江苏农业学报, 2021, 37(2):480-492.
[10] 孟文静, 张家琦, 赵康路, 等. 谷子Dof转录因子家族分析及功能预测. 分子植物育种, 2019, 174(4):1080-1089.
[11] Yanagisawa S. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant and Cell Physiology, 2004, 45(4):386-391.
doi: 10.1093/pcp/pch055 pmid: 15111712
[12] Zhang A D, Wang W Q, Yang T, et al. Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit. Plant Physiology, 2018, 178(2):850-863.
[13] Shim Y, Kang K, An G, et al. Rice DNA-binding one zinc finger 24 (OsDOF24) delays leaf senescence in a jasmonate-mediated pathway. Plant & Cell Physiology, 2019, 60(9):2065-2076.
[14] Huang W, Huang Y, Li M Y, et al. Dof transcription factors in carrot: genome-wide analysis and their response to abiotic stress. Biotechnology Letters, 2016, 38(1):145-155.
doi: 10.1007/s10529-015-1966-2 pmid: 26466595
[15] 赵梦琪, 齐豫川, 雷振生, 等. 粗山羊草Dof转录因子家族基因的鉴定与分析. 分子植物育种, 2017, 15(7):2590-2597.
[16] Su Y, Liang W, Liu Z J, et al. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. Journal of Plant Physiology, 2017, 218:222-234.
[17] Wu Q, Li D Y, Li D J, et al. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.). Frontiers in Plant Science, 2015, 6:833.
[18] Chen W Q, Chao G, Singh K B. The promoter of a H2O2- inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF-and OBP1-binding sites. The Plant Journal, 1996, 10(6):955-966.
[19] 张丹丹, 杨瑶君, 江纳, 等. 黄藤Dof家族的全基因组鉴定及系统进化分析. 西南林业大学学报(自然科学), 2021, 41(6):126-138.
[20] Zhou Y, Cheng Y, Wan C P, et al. Genome-wide characterization and expression analysis of the Dof gene family related to abiotic stress in watermelon. PeerJ, 2020, 8(1/2):e8358.
[21] 闵远昌, 叶钰澜, 胡欢, 等. 玉米Dof转录因子的全基因组鉴定和表达模式分析. 分子植物育种, 2024, 22(8):2347-2447.
[22] 贾利强, 赵秋芳, 陈曙, 等. 9个玉米Dof基因对逆境胁迫的响应模式分析. 西北植物学报, 2020, 40(8):1347-1355.
[23] 王泽民, 晋昕, 张飞燕, 等. Dof转录因子在作物逆境胁迫响应及农艺性状改良中的作用. 生物学杂志, 2023, 40(4):1736-2095.
[24] 张凤娇. 拟南芥AtDof2.3基因抗逆功能研究. 哈尔滨:东北林业大学, 2015.
[25] Liu L, Su C, Wang Y C, et al. ATDof5.8 protein is the up-stream regulator of ANAC069 and is responsive to abiotic stress. Biochimie, 2015, 110:17-24.
[26] 贾利强, 赵秋芳, 陈曙, 等. 11个玉米DOF基因对逆境胁迫的表达模式分析. 西北农业学报, 2021, 30(7):1018-1027.
[27] 张焕欣, 李国权, 杨惠栋, 等. 甜瓜Dof家族全基因组鉴定与表达分析. 园艺学报, 2019, 46(11):2176-2187.
doi: 10.16420/j.issn.0513-353x.2019-0115
[28] 葛敏, 吕远大, 李坦, 等. 玉米Dof转录因子家族的全基因组鉴定与分析. 中国农业科学, 2014, 47(23):4563-4573.
doi: 10.3864/j.issn.0578-1752.2014.23.002
[29] 赵振祥, 周东波, 张银霞, 等. 普通烟草Dof转录因子家族的全基因组鉴定及分析. 中国烟草科学, 2022, 43(4):70-77.
[30] Corrale A R, Carrillo L, Lasierra P, et al. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell and Environment, 2017, 40(5):748-764.
[31] 唐跃辉, 包欣欣, 王健, 等. 小桐子Dof基因家族生物信息学与表达分析. 江苏农业学报, 2019, 35(1):15-25.
[32] Yang Z, Chi X Y, Guo F F, et al. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress- responsive gene, SbRD19, in sorghum. Journal of Plant Physiology, 2020, 246:153142.
[33] Tang Q, Zhang X D, Guo J, et al. Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways. Journal of Integrative Agriculture, 2022, 21(3):697- 709.
[1] 孙远涛, 龙文靖, 刘天朋, 赵甘霖, 丁国祥, 向箭宇, 李元, 黄磊, 倪先林. 12个糯高粱亲本的主要性状配合力及相关性分析[J]. 作物杂志, 2024, (6): 84–90
[2] 蒋凤林, 雷雄彪, 赵嘉暄, 黄敏, 李曼菲, 杜何为. 植物根毛生长发育过程及分子调控机制[J]. 作物杂志, 2024, (6): 9–17
[3] 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175–180
[4] 董明宇, 郑宏峰, 朱哲. 不同胚乳表型对高粱农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 29–34
[5] 张薇, 王琦, 闫鹏, 许艳丽, 严洪冬, 李桂英, 陈迪苏, 焦晓燕, 卢霖, 董志强. 聚糠萘合剂对东北地区高粱不同密度群体叶片衰老及产量的影响[J]. 作物杂志, 2024, (5): 96–104
[6] 任梁, 房孟颖, 武志海, 董学瑞, 卢霖, 闫鹏, 董志强. 乙矮合剂对酿造高粱抗倒伏能力及产量的影响[J]. 作物杂志, 2024, (4): 164–171
[7] 胡连清, 陈露, 刘雯雯, 周万海, 冯瑞章, 魏琴, 赵鑫, 舒豪, 陈玲妹, 陈雨薇. 酿酒专用糯红高粱内生细菌多样性分析及功能菌株筛选[J]. 作物杂志, 2024, (4): 194–202
[8] 姚琦, 王皓, 徐翎清, 兴旺, 刘大丽, 鲁振强. 甜菜C2H2型锌指蛋白转录因子家族全基因组鉴定及镉胁迫下的表达分析[J]. 作物杂志, 2024, (4): 33–42
[9] 王佳旭, 张飞, 张旷野, 柯福来, 王艳秋, 卢峰, 朱凯. 减氮增施DMPP对高粱氮素吸收与利用的影响[J]. 作物杂志, 2024, (1): 126–131
[10] 王海涛, 任春梅, 董岩, 李硕, 程兆榜, 季英华. 江苏淮安市高粱上玉米黄花叶病毒的分子检测与鉴定[J]. 作物杂志, 2024, (1): 233–238
[11] 孙远涛, 龙文靖, 李元, 刘天朋, 赵甘霖, 丁国祥, 倪先林. 45份糯高粱种质资源主要农艺性状和SSR标记的遗传多样性分析[J]. 作物杂志, 2024, (1): 57–64
[12] 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 65–72
[13] 郝智勇, 杨广东, 胡尊艳, 李菁华, 孙邦升, 陈林祺. 不同肥料对极早熟高粱产量、农艺性状及品质的影响[J]. 作物杂志, 2023, (6): 218–223
[14] 张福耀, 平俊爱, 焦晓燕. 高粱的耐瘠性与养分高效利用研究现状与展望[J]. 作物杂志, 2023, (6): 26–34
[15] 陈冰嬬, 于淼, 石贵山, 王江红, 唐玉劼, 徐晨, 李海青, 徐宁, 周紫阳, 王鼐. 优异糯高粱不育系吉5535A的创制与应用[J]. 作物杂志, 2023, (4): 260–266
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!