作物杂志,2021, 第2期: 108–115 doi: 10.16035/j.issn.1001-7283.2021.02.015

所属专题: 杂粮作物

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

施氮量对高粱产量、品质及氮利用效率的影响

曹晓燕1, 武爱莲2, 王劲松2, 董二伟2, 焦晓燕2()   

  1. 1山西大学生物工程学院,030006,山西太原
    2山西农业大学(山西省农业科学院)资源环境学院,030031,山西太原
  • 收稿日期:2020-11-20 修回日期:2021-02-05 出版日期:2021-04-15 发布日期:2021-04-16
  • 通讯作者: 焦晓燕
  • 作者简介:曹晓燕,研究方向为植物营养与养分资源高效利用,E-mail: 1289561127@qq.com
  • 基金资助:
    国家现代农业产业技术体系专项(CARS-06-13.5-A20);山西省面上青年基金项目(201901D211558);山西省农业科学院国家基金培育项目(YGJPY2006)

Effects of Nitrogen Fertilization on Yield, Quality and Nitrogen Utilization Efficiency of Sorghum

Cao Xiaoyan1, Wu Ailian2, Wang Jinsong2, Dong Erwei2, Jiao Xiaoyan2()   

  1. 1College of Bioengineering, Shanxi University, Taiyuan 030006, Shanxi, China
    2College of Resources and Environment, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Taiyuan 030031, Shanxi, China
  • Received:2020-11-20 Revised:2021-02-05 Online:2021-04-15 Published:2021-04-16
  • Contact: Jiao Xiaoyan

摘要:

为了更好地对高粱进行氮素管理,采用盆栽试验研究了施氮量对高粱生长、籽粒产量及品质、氮素累积及转运利用的影响。选取肥力较低的土壤,设6个氮水平:0(N0)、0.05(N1)、0.1(N2)、0.2(N3)、0.4(N4)和0.6g/kg(N5)(风干土)。结果表明,N3处理干物质累积量、叶片SPAD值、籽粒产量、穗粒数及收获指数均显著高于N0和N5处理;N3处理籽粒淀粉含量低于N1处理,但淀粉产量最高;随施氮量的增加籽粒单宁含量降低,蛋白质含量增加,蛋白质总产量以N3和N4最高。随施氮量的增加叶鞘中NO3--N含量增加,N3处理挑旗期和穗花期叶鞘中NO3--N含量明显高于N0、N1和N2,但在灌浆期N0~N3处理间硝态氮含量没有显著差异;N3处理从茎叶向籽粒的转运率最高,达到76.76%。综上,适宜的施氮量有利于高粱生长及产量的提高,且在生长前期提高了叶鞘中硝态氮累积,能协调籽粒产量和功能成分的关系,获得较高的淀粉和蛋白总产量。

关键词: 高粱, 施氮量, 籽粒产量, 淀粉含量与产量, 氮利用效率, 氮转移

Abstract:

To establish the nitrogen management practice for grain sorghum, a pot experiment was conducted to investigate the effects of nitrogen application rate on its growth, grain yield and quality, N accumulation and translocation. Less fertile air-dried soil was selected with six nitrogen levels, 0 (N0), 0.05 (N1), 0.1 (N2), 0.2 (N3), 0.4 (N4), and 0.6 (N5) g/kg. The results showed that dry matter accumulation, leaf SPAD value, grain yield, number of grains per panicle, and harvest index under N3 treatment were significantly higher than those under N0 and N5 treatments. The starch content in N3 treatment was lower than that in N1 treatment, but the starch yield of N3 was the highest. With the increase of nitrogen fertilization, the grain tannin content decreased and protein content increased, and the total protein output was the highest in N3 and N4. High NO3--N concentration of leaf sheath was induced by high N fertilization intensity. It is worthy of mentioning that NO3--N concentration of leaf sheath of N3 treatment was significantly higher than those of N0, N1, and N2 at flag leaf and anthesis stages. However, there was a similar value of NO3--N concentration of leaf sheath for these four treatments at filling stage. N3 treatment induced the highest percentage of N translocation from shoot to grain, which was 76.76%. In conclusion, appropriate nitrogen fertilization was beneficial to the growth and yield of sorghum, and increased NO3--N accumulation in leaf sheath at the early stage of growth, which could coordinate the relationship between grain yield and functional components and obtain higher total starch and protein yield.

Key words: Sorghum, N fertilization rate, Grain yield, Starch content and yield, N use efficiency, N translocation

图1

施氮量对高粱干物质累积量的影响

图2

施氮量对单株叶面积和SPAD值的影响 不同小写字母表示在0.05水平上差异显著,下同

表1

施氮量对高粱产量和收获指数的影响

处理Treatment 千粒重
1000-grain
weight (g)
穗粒数
Grains number
per panicle
籽粒产量(g/盆)
Grain yield
(g/pot)
收获指数
Harvest
index (%)
N0 16.82±0.28c 113.12±3.08c 5.70±0.11c 27.57±0.59c
N1 21.98±0.32b 354.41±11.18b 23.35±0.47b 45.50±0.43a
N2 22.60±2.04b 448.99±25.52a 29.60±0.79b 47.42±0.70a
N3 22.23±1.35b 545.10±37.34a 34.21±0.81a 49.51±0.78a
N4 28.80±0.46a 366.50±13.95b 31.64±1.11b 44.57±0.01a
N5 23.76±0.43b 296.60±9.54b 21.12±0.54b 42.25±1.17b

表2

施氮量对高粱籽粒品质的影响

处理
Treatment
单宁
Tannic
(g/kg)
淀粉Starch 蛋白质Protein
含量(%)
Content
单籽粒产量
Production per
grain (mg)
总产量(g/盆)
Total production
(g/pot)
含量(%)
Content
单籽粒产量
Production per
grain (mg)
总产量(g/盆)
Total production
(g/pot)
N0 16.5±0.1a 69.6±0.4b 11.8±0.2d 4.0±0.1e 6.3±0.1d 1.2±0.0e 0.4±0.0e
N1 15.3±0.4ab 73.7±0.2a 16.2±0.2b 17.2±0.4b 6.2±0.2d 1.4±0.0de 1.4±0.0d
N2 15.2±0.9ab 71.3±0.1b 14.5±0.7cd 21.1±0.6a 8.0±0.1c 1.6±0.1d 2.4±0.1c
N3 14.2±0.8ab 67.6±0.6c 14.4±1.2cd 23.1±0.7a 11.7±0.1b 2.5±0.2c 4.0±0.1a
N4 12.9±0.1b 67.0±0.7c 19.3±0.4a 21.2±0.7a 12.8±0.2a 3.7±0.1a 4.0±0.1a
N5 14.5±0.2ab 66.4±0.2c 15.8±0.3c 14.0±0.3c 13.2±0.3a 3.1±0.1b 2.8±0.1b

表3

施氮量对叶鞘中硝态氮含量的影响

处理
Treatment
挑旗期
Flag leaf stage
穗花期
Anthesis stage
灌浆期
Grain filling stage
N0 46.3±4.7c 27.5±6.1c 56.3±8.8b
N1 34.5±0.5c 25.0±2.0c 29.6±1.3b
N2 63.2±29.8c 36.8±1.0c 30.3±0.7b
N3 1903.3±322.0bc 756.3±62.7b 45.9±3.7b
N4 2878.5±656.2ab 3772.6±602.7a 2800.0±271.4a
N5 4197.4±828.5a 4343.2±310.5a 6804.4±119.6a

表4

施氮量对各器官中氮含量的影响

处理
Treatment
穗花期Anthesis stage 收获期Harvest stage
茎叶Shoot 花穗Panicle 茎叶Shoot 籽粒Grain 穗芯Inflorenscence
N0 5.35±0.10d 10.40±0.43c 3.59±0.07d 10.93±0.21c 4.17±0.25c
N1 6.92±0.18d 12.30±0.11b 3.73±0.16d 9.87±0.25c 3.41±0.07c
N2 9.36±0.13c 14.53±0.27a 4.22±0.11d 12.85±0.13c 3.80±0.35c
N3 13.98±0.77b 15.93±0.74a 5.32±0.22c 18.75±0.21b 5.51±0.05b
N4 15.33±0.31ab 15.30±0.64a 8.71±0.25b 20.40±0.30ab 6.11±0.24ab
N5 16.05±0.31a 15.20±0.41a 12.10±0.47a 21.13±0.50a 6.86±0.20a

图3

施氮量对各部位氮素累积的影响

表5

施氮量对茎叶向籽粒氮转运的影响

处理
Treatment
N转运量
(mg/盆)
N translocation
(mg/pot)
转运N占
籽粒N比例
Proportion of N translocation to grain (%)
营养器官
氮转运率
N translocation
rate of source-
sink (%)
N0 31.59±0.62c 49.89±0.58b 39.70±0.76c
N1 155.09±11.96b 67.48±5.47ab 63.33±1.22b
N2 272.55±11.74b 71.60±1.67a 70.40±0.49ab
N3 490.11±32.08a 76.45±4.79a 76.76±0.86a
N4 470.19±44.33a 72.54±5.30a 61.09±1.93ab
N5 235.29±32.22b 52.16±5.18b 44.12±4.86c

表6

施氮量对氮利用的影响

处理
Treatment
氮利用效率
N utilization
efficiency (%)
氮偏生产力
Partial productivity
of N fertilizer (g/g)
氮生理利用效率
Physiological N
use efficiency (g/g)
N0 - 49.2±1.1c -
N1 49.5±0.7a 70.0±0.8a 81.4±1.1a
N2 45.8±1.4a 57.3±0.4b 59.7±0.5b
N3 40.8±0.8b 39.6±2.1d 40.0±0.7c
N4 24.6±0.9c 32.5±0.2e 30.1±0.3d
N5 12.5±0.3d 27.4±0.8f 23.4±0.9e

图4

籽粒淀粉含量、籽粒产量及淀粉产量对茎叶氮含量的响应

图5

籽粒淀粉含量、籽粒产量及淀粉产量对叶鞘硝态氮含量的响应

表7

籽粒产量、淀粉含量和淀粉产量(y)与茎叶氮含量(x)的关系

生育期Growth stage 指标Index 响应曲线Regression equation 决定系数Coefficient of determination (R2) P
花期Anthesis 籽粒产量 y=-63.33x2+152.12x-55.35 0.849 0.000
籽粒淀粉含量 y=24.06x3-86.42x2+91.78x+42.27 0.854 0.000
淀粉产量 y=-46.49x2+109.81x-39.60 0.838 0.000
收获期Harvest 籽粒产量 y=229.77x3-643.40x2+548.42x-109.09 0.652 0.000
籽粒淀粉含量 y=-21.46x3+63.69x2-62.44x+87.00 0.626 0.000
淀粉产量 y=154.57x3-430.78x2+364.46x-71.14 0.585 0.000

表8

籽粒产量、淀粉含量和淀粉产量(y)与叶鞘硝态氮含量(x)的关系

生育期Growth stage 指标Index 响应曲线Regression equation 决定系数Coefficient of determination (R2) P
拔节期Booting 籽粒产量 y=9.88x0.13 0.211 0.024
籽粒淀粉含量 y=-1.21E-10x3+1.41E-6x2-0.005x+71.78 0.724 0.000
淀粉产量 y=7.49x0.12 0.166 0.048
花期Anthesis 籽粒产量 y=11.00x0.12 0.197 0.030
籽粒淀粉含量 y=75.03x0.02 0.720 0.000
淀粉产量 y=8.25x0.10 0.153 0.058
灌浆期Filling 籽粒产量(y) y=17.27x0.04 0.021 0.494
籽粒淀粉含量(y) y=73.88x0.01 0.523 0.000
淀粉产量(y) y=12.76x0.03 0.010 0.640
[1] Good A G, Sharwat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production. Trends in Plant Science, 2004,9(12):597-605.
[2] 李书田, 刘晓永, 何萍. 当前我国农业生产中的养分需求分析. 植物营养与肥料学报, 2017,23(6):1416-1432.
[3] 唐文雪, 马忠明, 王景才. 施氮量对旱地全膜双垄沟播玉米田土壤硝态氮、产量和氮肥利用率的影响. 干旱地区农业研究, 2015,33(6):58-63.
[4] Tilman D. Global environmental impacts of agricultural expansion:The need for sustainable and efficient. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(11):5995-6000.
[5] Peoples M B, Freney J R, Mosier A R. Minimizing gaseous losses of nitrogen// Nitrogen Fertilization in Environment, 1995: 565-607.
[6] Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change. Science, 2001,292(5515):281-284.
[7] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014,20(4):783-795.
[8] Beillouin D, Trépos R, Gauffreteau A, et al. Delayed and reduced nitrogen fertilization strategies decrease nitrogen losses while still achieving high yields and high grain quality in malting barley. European Journal of Agronomy, 2018,101:174-182.
[9] Zhang X, Davidson E A, Mauzerall D L, et al. Managing nitrogen for sustainable development. Nature, 2015,528(7580):51-59.
[10] Leiser W L, Rattunde H F, Piepho H P, et al. Getting the most out of sorghum low-input field trials in west Africa using spatial adjustment. Journal of Agronomy and Crop Science, 2012,198(5):349-359.
[11] 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009,42(7):2342-2348.
[12] Hernlem B J, Ravva S V. Application of flow cytometry and cell sorting to the bacterial analysis of environmental aerosol samples. Journal of Environmental Monitoring, 2007,9(12):1317-1322.
[13] Subbarao G V, Nakahara K, Ishikawa T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant Soil, 2008,313:89-99.
[14] Zakir H A K M, Subbarao G V, Pearse S J, et al. Detection,isolation and characterization of a root-exuded compound,methyl 3-(4-hydroxyphenyl) propionate,responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist, 2008,180(2):442-451.
[15] 王劲松, 董二伟, 武爱莲, 等. 灌溉时期与施氮量对矮秆高粱产量和品质的影响. 灌溉排水学报, 2017,36(S2):1-8.
[16] 刘鹏, 武爱莲, 王劲松, 等. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018,51(16):3074-3083.
[17] 朱艳, 姚霞, 田永超, 等. 小麦氮素积累动态的高光谱监测. 中国农业科学, 2008,41(7):1937-1946.
[18] 刘东军, 张宏纪, 孙岩, 等. 氮肥对小麦氮积累和分配及氮肥利用率影响的研究进展. 黑龙江农业科学, 2017(11):93-100.
[19] 王劲松, 董二伟, 武爱莲, 等. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019,52(22):4166-4176.
[20] Worland B, Nicole R, David J, et al. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor. Journal of Plant Physiology, 2017,9(216):118-124.
[21] Scheible W R, Gonzalezfontes A, Lauerer M, et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 1997,9(5):783-798.
[22] Zhang S S, Yue S C, Yan P, et al. Testing the suitability of the end-of-season stalk nitrate test for summer corn (Zea mays L.) production in China. Field Crops Research, 2003,154:153-157.
[23] 徐琢频. 作物单籽粒近红外快速无损检测的模型转移方法研究. 合肥:中国科学技术大学, 2020.
[24] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 高粱单宁含量的测定: GB/T 15686-2008.
[25] Gaju O, Allard V, Martre P, et al. Nitrogen partitioning and remobilization in relation to leaf senescence,grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 2013,155:213-223.
[26] 熊淑萍, 吴克远, 王小纯, 等. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016,49(12):2267-2279.
[27] 曾建敏, 崔克辉, 黄见良, 等. 水稻生理生化特性对氮肥的反应及与氮利用效率的关系. 作物学报, 2007,33(7):1168-1176.
[28] 江东国, 黄正来, 张文静, 等. 晚播条件下施氮量对稻茬小麦氮素吸收及产量的影响. 麦类作物学报, 2019,39(10):1211-1221.
[29] Takei K, Ueda N, Aoki K. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant and Cell Physiology, 2004,45(8):1053-1062.
[30] Elizabeth J P, Jiancheng S. Cytokinin:a key driver of seed yield. Journal of Experimental Botany, 2015(3):593-606.
[31] 熊淑萍, 王静, 王小纯, 等. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014,38(7):767-775.
[32] 王尊欣. 水稻籽粒矿质营养品质的氮素调控效应研究. 南京:南京农业大学, 2018.
[33] Schiltz S, Munier J N, Jeudy C, et al. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiology, 2005,137(4):1463-1473.
[34] Pommel B, Gallais A, Coque M, et al. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. European Journal of Agronomy, 2006,24(3):203-211.
[35] Delhon P, Gojon A, Tillard P, et al. Diurnal regulation of NO3- uptake in soybean plants I. Changes in NO3- influx,efflux,and N utilizationin the plant during the day/night cycle. Journal of Experimental Botany, 1995,46(10):1585-1594.
[36] Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science, 2009,11(9):440-448.
[37] 梁喜龙, 邱凯华, 何瑞, 等. 植物籽粒建成的调控与细胞分裂素. 植物生理学报, 2020,56(4):635-642.
[38] 邹京南, 于奇, 金喜军, 等. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响. 作物学报, 2020,46(5):745-758.
[39] 张立华, 林益明, 叶功富, 等. 环境因素对植物单宁形成的影响. 鲁东大学学报(自然科学版), 2010,26(4):366-372.
[1] 王佳旭, 张飞, 张旷野, 柯福来, 王艳秋, 卢峰, 朱凯. 减氮增施DMPP对高粱氮素吸收与利用的影响[J]. 作物杂志, 2024, (1): 126–131
[2] 郝小聪, 李欣宇, 侯起岭, 杨吉芳, 安春会, 王长华, 叶志杰, 张风廷. 施氮量对二系杂交小麦品质的影响[J]. 作物杂志, 2024, (1): 187–192
[3] 王海涛, 任春梅, 董岩, 李硕, 程兆榜, 季英华. 江苏淮安市高粱上玉米黄花叶病毒的分子检测与鉴定[J]. 作物杂志, 2024, (1): 233–238
[4] 孙远涛, 龙文靖, 李元, 刘天朋, 赵甘霖, 丁国祥, 倪先林. 45份糯高粱种质资源主要农艺性状和SSR标记的遗传多样性分析[J]. 作物杂志, 2024, (1): 57–64
[5] 郝智勇, 杨广东, 胡尊艳, 李菁华, 孙邦升, 陈林祺. 不同肥料对极早熟高粱产量、农艺性状及品质的影响[J]. 作物杂志, 2023, (6): 218–223
[6] 张福耀, 平俊爱, 焦晓燕. 高粱的耐瘠性与养分高效利用研究现状与展望[J]. 作物杂志, 2023, (6): 26–34
[7] 胡锐, 胡香玉, 傅友强, 叶群欢, 潘俊峰, 梁开明, 李妹娟, 刘彦卓, 钟旭华. 氮肥运筹对水稻根系生长发育的影响及其与氮肥吸收利用的关系[J]. 作物杂志, 2023, (5): 179–186
[8] 陈冰嬬, 于淼, 石贵山, 王江红, 唐玉劼, 徐晨, 李海青, 徐宁, 周紫阳, 王鼐. 优异糯高粱不育系吉5535A的创制与应用[J]. 作物杂志, 2023, (4): 260–266
[9] 张海斌, 吴晓华, 于美玲, 王小兵, 叶君, 崔思宇, 李元清, 王占贤, 张宏旭, 薛伟, 李岩, 崔国惠, 赵轩微, 刘娟. 内蒙古区域试验小麦品种(系)籽粒产量AMMI模型分析[J]. 作物杂志, 2023, (3): 27–34
[10] 刘宇, 曹家林, 肖正午, 张鸣宇, 陈佳娜, 曹放波, 黄敏. 施氮量对超级杂交稻Y两优900产量与氮肥利用率的影响[J]. 作物杂志, 2023, (2): 126–130
[11] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 基于GGE双标图的高粱品种农艺性状和稳产性分析[J]. 作物杂志, 2023, (2): 36–45
[12] 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 施氮量对北部冬麦区种植弱筋小麦产量与品质的影响[J]. 作物杂志, 2023, (1): 163–169
[13] 吴子帅, 刘广林, 李虎, 罗群昌, 陈传华, 朱其南. 施氮量对优质常规籼稻稻米品质的影响[J]. 作物杂志, 2023, (1): 84–88
[14] 种浩天, 尚程, 张运波, 黄礼英. 增密减氮对不同类型水稻品种颖花形成的影响[J]. 作物杂志, 2022, (6): 226–233
[15] 张瑞栋, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响[J]. 作物杂志, 2022, (6): 234–240
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!