Crops ›› 2020, Vol. 36 ›› Issue (2): 125-133.doi: 10.16035/j.issn.1001-7283.2020.02.019

Previous Articles     Next Articles

Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China

Li Ruijie1,2,Tang Huihui1,Wang Qingyan1,Xu Yanli1,Fang Mengying1,Yan Peng1,Dong Zhiqiang1(),Zhang Fenglu2()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Ministry of Agriculture and Rural Affairs Key Laboratory of Crop Eco-physiology and Cultivation, Beijing 100081, China
    2 College of Agronomy, Agricultural University of Hebei, Baoding 071001, Hebei, China
  • Received:2019-08-20 Revised:2019-11-01 Online:2020-04-15 Published:2020-04-13
  • Contact: Zhiqiang Dong,Fenglu Zhang E-mail:dongzhiqiang@caas.cn;nxyumi@hebau.edu.cn

Abstract:

Taking Zhongdan 909 as the material, 5-aminolevulinic acid (5-ALA) and Ethrel (ETH) were mixed at different concentrations, and foliar spraying was performed at the jointing stage, This study is intended to explore the technical mechanism of 5-ALA—ETH compound on alleviating low temperature and chilling damage, improving leaf photosynthesis, increasing dry matter accumulation and ensuring stable and increased yield of spring maize in northeast China. The results showed that 22.50g/ha 5-ALA combined with 450mL/ha ETH (A2E1) significantly increased the maize yield by 4.8%, compared with the control. Under this treatment, the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci ) and transpiration rate (Tr) of functional leaves in the growth period of maize increased by 2.7%, 3.6%, 2.2% and 1.4%, respectively as compared with the control, and by 3.2%, 15.7%, 8.2% and 3.6%, respectively compared with the control during the filling stage. In addition, the relative green leaf area increased by 16.9% at harvest time (R6), SPAD value of functional leaves and dry matter accumulation of aboveground parts of maize treated with A2E1 during the whole growth period increased by 2.9% and 8.6% on average, respectively, compared with the control. Therefore, the 5-ALA (22.50g/ha)—ETH (450mL/ha) compound can effectively improve the photosynthetic characteristics of spring maize in northeast China during the filling stage and improve the ability of spring maize to resist low temperature and cold damage in the middle and late growth stages, which is of great significance to ensure the high and stable yield of spring maize in this region.

Key words: 5-ALA—ETH compound, Spring maize, Low temperature and cold damage, Photosynthesis characteristic, Yield

Table 1

Amount of 5-aminolevulinic acid (5-ALA) and ethephon (ETH) used under different treatments in 2018"

处理
Treatment
5-氨基乙酰丙酸
5-ALA (g/hm2)
乙烯利
ETH (mL/hm2)
CK 0 0
A1 11.25 0
A2 22.50 0
A3 33.75 0
E1 0 450
A1E1 11.25 450
A2E1 22.50 450
A3E1 33.75 450
E2 0 900
A1E2 11.25 900
A2E2 22.50 900
A3E2 33.75 900

Fig.1

Effects of 5-ALA, ETH and 5-ALA—ETH on leaf Pn of maize"

Fig.2

Effects of 5-ALA, ETH and 5-ALA—ETH on leaf Gs of maize"

Fig.3

Effects of 5-ALA, ETH and 5-ALA—ETH on leaf Ci of maize"

Fig.4

Effects of 5-ALA, ETH and 5-ALA—ETH on leaf Tr of maize"

Fig.5

Effects of 5-ALA, ETH and 5-ALA—ETH on leaf SPAD value of maize"

Fig.6

Effects of 5-ALA, ETH and 5-ALA—ETH on LAI of maize"

Table 2

Effects of 5-ALA, ETH and 5-ALA—ETH on dry matter accumulation of maize"

处理
Treatment
5-ALA
(g/hm2)
ETH
(mL/hm2)
植株干物质积累量(g/株) Plant dry matter accumulation (g/plant)
花前Pre-silking 花后Post-silking 总干重Dry matter weight (g)
CK 0 0 134.5±2.6ab 206.5±7.8c 341.0±7.8b
A1 11.25 0 134.5±9.0ab 210.5±12.2bc 345.0±12.2b
A2 22.50 0 143.2±6.2a 210.6±13.7bc 353.8±13.7ab
A3 33.75 0 141.6±1.8a 214.3±9.8bc 355.9±9.8ab
E1 0 450 140.7±2.3a 204.8±5.4c 345.4±5.4b
A1E1 11.25 450 134.1±5.2ab 208.5±18.9bc 342.6±18.9b
A2E1 22.50 450 137.5±1.7ab 232.9±6.1a 370.5±6.1a
A3E1 33.75 450 140.6±5.4a 227.4±19.3ab 368.0±19.3a
E2 0 900 117.5±11.9c 202.1±1.6bc 319.6±1.6c
A1E2 11.25 900 136.8±5.7ab 202.2±1.4bc 339.0±1.4b
A2E2 22.50 900 126.5±7.6bc 183.7±1.6d 310.3±1.6c
A3E2 33.75 900 118.9±6.7c 201.2±0.0bc 320.1±0.0c
5-ALA ns ns ns
ETH <0.001 <0.001 <0.001
5-ALA—ETH 0.010 0.030 0.018

Fig.7

Effects of 5-ALA, ETH and 5-ALA—ETH on yield of maize"

[1] 陈印军, 王琦琪, 向雁 . 我国玉米生产地位、优势与自给率分析. 中国农业资源与区划, 2019,40(1):7-16.
[2] 国家统计局. 中国统计年鉴. 北京:中国统计出版社, 2018.
[3] 杨若子, 周广胜 . 东北三省玉米主要农业气象灾害综合危险性评估. 气象学报, 2015,73(6):1141-1153.
[4] 焦浏, 董志强, 高娇 , 等. 双重化控对春玉米不同密度群体冠层结构的影响. 玉米科学, 2014,22(6):51-58.
[5] 陈传晓, 董志强, 高娇 , 等. 不同积温对春玉米灌浆期叶片光合性能的影响. 应用生态学报, 2013,24(6):1593-1600.
[6] 徐田军, 董志强, 高娇 , 等. 聚糠萘水剂对不同积温带玉米叶片衰老和子粒灌浆速率的影响. 作物学报, 2012,38(9):1698-1709.
[7] 郭春明, 任景全, 曹铁华 , 等. 春玉米穗分化期低温对产量构成因素的影响. 应用气象学报, 2018,29(4):505-512.
[8] Castelfranco P A, Beale S I . Chlorophyll biosynthesis:recent advances and areas of current interest. Annual Review Plant Physiology, 1983,34:241-278.
[9] 汪良驹, 姜卫兵, 黄保健 . 5-氨基乙酰丙酸对弱光下甜瓜幼苗光合作用和抗冷性的促进效应. 园艺学报, 2004,31(3):321-326.
[10] 刘玉梅, 艾希珍, 于贤昌 . 5-氨基乙酰丙酸对亚适宜温光条件下黄瓜幼苗光合特性的影响. 园艺学报, 2010,37(1):65-71.
[11] Hotta Y, Tanaka T, Takaoka H , et al. Promotive effect of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regulator, 1997,22:109.
[12] 闫宏涛, 李汉杰, 王邦法 . 光活化除草剂ALA作用机理初探. 植物保护, 1994,20(2):44-45.
[13] 郭丽红, 王定康, 杨晓虹 , 等. 外源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响. 云南大学学报(自然科学版), 2004,26(4):352-356.
[14] 刘剑锋, 程云清, 陈智文 . 乙烯对旱后复水玉米某些生理特性的影响. 热带亚热带植物学报, 2009,17(2):146-151.
[15] 卫晓轶, 张明才, 李召虎 , 等. 不同基因型玉米对乙烯利调控反应敏感性的差异. 作物学报, 2011,37(10):1819-1827.
[16] 葛建军, 朱林, 张国良 , 等. 乙烯利对花生氮代谢和光合特性的影响. 花生学报, 2008,37(2):22-27.
[17] 卢霖, 董志强, 董学瑞 , 等. 乙矮合剂对不同密度夏玉米花粒期叶片氮素同化与早衰的影响. 作物学报, 2015,41(12):1870-1879.
[18] 李光彦, 王庆燕, 许艳丽 , 等. 双重化控对春玉米灌浆期穗位叶和籽粒蔗糖代谢关键酶活性的影响. 作物学报, 2016,42(8):1215-1223.
[19] 汪良驹, 石伟, 刘晖 , 等. 外源5-氨基乙酰丙酸处理对小白菜叶片的光合作用效应. 南京农业大学学报, 2004,27(2):34-38.
[20] 徐刚, 刘涛, 高文瑞 , 等. ALA对低温胁迫下辣椒植株生长及光合特性的影响. 江苏农业学报, 2011,27(3):612-616.
[21] 孙阳, 王燚, 孟瑶 , 等. 外源5-氨基乙酰丙酸对低温胁迫下玉米幼苗生长及光合特性的影响. 作物杂志, 2016(5):87-93.
[22] 刘君 . 乙烯对麦冬光合作用的影响及相关基因的克隆. 北京:北京林业大学, 2008.
[23] 程云清, 赵桂兰, 刘剑锋 , 等. 乙烯抑制剂AVG和促进剂ACC对大豆幼苗叶片光合特征的影响. 浙江大学学报(农业与生命科学版), 2010,36(4):419-426.
[24] 韦弟, 李杨瑞, 邸南南 , 等. 乙烯利对香蕉抗寒性的影响. 热带作物学报, 2009,30(12):1789-1792.
[25] 董荣荣, 邓娇燕, 郭佳 , 等. 根施5-氨基乙酰丙酸对亚适宜温光下黄瓜幼苗生长的影响. 核农学报, 2019,33(1):148-157.
[26] 高晶晶, 冯新新, 段春慧 , 等. ALA提高苹果叶片光合性能与果实品质的效应. 果树学报, 2013,30(6):944-951.
[27] 鄢岩 . 5-氨基乙酰丙酸(ALA)和叶面肥对荒漠区温室番茄和辣椒增产性能影响的研究. 杨凌:西北农林科技大学, 2016.
[28] 徐铭, 徐福利 . 5-氨基乙酰丙酸对日光温室油麦菜产量及品质的影响. 干旱地区农业研究, 2008,26(3):133-137.
[29] 姚素梅, 茹振钢, 刘明久 , 等. 5-氨基乙酰丙酸(ALA)对冬小麦花后干物质生产和旗叶衰老的影响. 应用生态学报, 2011,22(2):383-388.
[30] 张子学, 朱仕燕, 李文阳 , 等. 化控剂-乙烯利对玉米植株主要性状和产量的影响. 中国农学通报, 2014,30(3):209-213.
[31] 卢霖, 董志强, 董学瑞 , 等. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响. 作物学报, 2016,42(4):561-573.
[32] 王海永, 陈小文, 牛晓雪 , 等. 乙烯利对夏玉米果穗生长发育影响及生理机制探究. 玉米科学, 2014,22(5):64-70.
[1] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[2] Shen Hongtao,Zhang Fusheng,Li Dong,Qiu Jianhua,Cai Xinghong,Qin Yubao. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[3] Wang Tianwen,Li Changzhong,Chen Guanghai. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[4] Chen Diwen,Zhou Wenling,Ao Junhua,Huang Ying,Jiang Yong,Han Xihong,Qin Yimin,Shen Hong. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[5] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[6] Fan Yegeng,Yan Haifeng,Chen Rongfa,Qiu Lihang,Zhou Huiwen,Huang Xing,Weng Mengling,Wu Jianming,Li Yangrui,Wei Shengman. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
[7] Liu Xin,Zhu Rong,Yang Mei,Liu Zhangyong. Screening of High-Yield Germplasms for Ratoon Rice and Analysis of High Yield Composition [J]. Crops, 2020, 36(2): 28-33.
[8] Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[9] Yang Zhichang,Shen Tao,Luo Zhuo,Peng Zhi,Hu Yuqian,Zi Tao,Xiong Tinghao,Song Haixing. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[10] Chen Tianxin,Wang Yanjie,Zhang Yan,Chang Xuhong,Tao Zhiqiang,Wang Demei,Yang Yushuang,Zhu Yingjie,Liu Akang,Shi Shubing,Zhao Guangcai. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[11] Zhang Bo,Gao Tiantian,Cheng Hongbo,Li Rui,Chai Yuwei,Li Yawei,Chai Shouxi. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[12] Jing Peipei,Ren Hongru,Yang Hongjian,Dai Qigen. Effects of Saline Stress on Leaf Photosynthesis Characteristics and Grain Yield of Two Rice Cultivars (Lines) [J]. Crops, 2020, 36(1): 67-75.
[13] Huang Yinling,Lei Zhongshun,Zheng Tao,Suo Xinxia. Effects of Different Nitrogen Concentrations on Yield and Benefit of Winter Wheat and Soil Physical and Chemical Properties [J]. Crops, 2020, 36(1): 130-135.
[14] Zhang Yongqiang,Qi Xiaoxiao,Zhang Lu,Dong Huiyun,Chen Chuanxin, Sailihan·Sai,Xue Lihua,Chen Xingwu,Lei Junjie. Effects of Nitrogen Management on Leaf Photosynthetic Characteristics and Yield of Winter Wheat under Drip Irrigation [J]. Crops, 2020, 36(1): 141-145.
[15] Liu Meiju,Li Jiangzhou,Ji Sigui,Fan Miaomiao,Gu Xinghui,Zhang Limeng,Zhang Jinwei,Qu Xing,Zhou Wenbing,Lin Shan. Evaluation of Effect of Biochar on Tobacco Yield and Nitrogen Use Efficiency in Mountain Slope Areas [J]. Crops, 2020, 36(1): 89-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .