Crops ›› 2021, Vol. 37 ›› Issue (1): 74-81.doi: 10.16035/j.issn.1001-7283.2021.01.011

Previous Articles     Next Articles

Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1"

Deng Wanyue(), Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao()   

  1. College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
  • Received:2020-04-15 Revised:2020-07-02 Online:2021-02-15 Published:2021-02-23
  • Contact: Wu Yichao E-mail:1149017145@qq.com;chaoyue-wu@qq.com

Abstract:

In this study, polyethylene glycol (PEG-6000) was used to simulate long-term drought stress on potted 'Chuandanshen 1' (CDS-1) for investigating the effects of drought stress on the growth, chlorophyll content, physiological indicators, and the content of main active components. The results were as follows: Drought stress significantly reduced the chlorophyll content in the leaves. Under drought stress, the contents of soluble protein, soluble sugar and proline in leaves showed a significant increasing trend with the increase of drought. MDA content increased significantly under middle and severe drought stress. Antioxidant enzyme activity increased with the increasing of drought stress. HPLC analysis of active components showed that phenolic acid and tanshinone content in the root increased after treating with 50-150g/L of PEG-6000. The content of rosmarinic acid and salvianolic acid A were the highest when treated with 150g/L, which was 145% and 175% of CK. The content of tanshinones was the highest when treated with 50g/L PEG-6000, and increased more than 60% compared with CK. Overall, the results demonstrated that CDS-1 showed adaptive changes under drought stress and had a certain drought-resistant ability. The activity of antioxidant enzyme and the contents of main active components of CDS-1 increased, which improved its antioxidant and disease-prevention ability to adapt the drought environment. Light and middle drought stress (50-100g/L PEG-6000) are beneficial to the accumulation of phenolic acid and tanshinones in CDS-1. In actual production, scientific control of water can be used to ensure and improve the quality of medicinal material CDS-1.

Key words: Chuandanshen 1, Drought stress, Physiological index, HPLC, Active components

Table 1

Different concentrations of PEG-6000 simulate drought stress treatments"

PEG浓度
PEG concentration(g/L)
水势梯度
Water potential gradient (MPa)
干旱程度
Degree of drought
0 (CK) 0
50 -0.1 轻度
100 -0.4 中度
150 -0.5 中度
200 -0.7 重度

Table 2

Standard curves of six active components of CDS-1"

化合物Compound 回归方程Regression equation 相关系数Correlation coefficient (r) 线性范围Linear range (mg/mL)
迷迭香酸Rosmarinic acid Y=4720.4X+30.738 0.9982 0.0025~0.0625
丹酚酸B Salvianolic acid B Y=13362X+12.023 0.9998 0.0200~0.2000
丹酚酸A Salvianolic acid A Y=8580.5X+41.569 0.9970 0.0025~0.0625
隐丹参酮Cryptotanshinone Y=61908X-3.0334 1 0.0005~0.0125
丹参酮ⅠTanshinone Ⅰ Y=150729X+0.5474 1 0.0005~0.0125
丹参酮ⅡA Tanshinone ⅡA Y=171690X-0.0514 1 0.00037~0.00555

Fig.1

Morphology of CDS-1 under PEG-6000 simulated drought stress with different concentrations"

Table 3

Chlorophyll content in leaves of CDS-1 under PEG-6000 simulated drought stress"

PEG-6000浓度
PEG-6000
concentration
(g/L)
叶绿素含量
Chlorophyll content (mg/g)
叶绿素a/b
Chl a/Chl b
Chl a Chl b 合计
Total
0 (CK) 0.88±0.10a 0.49±0.06a 1.37±0.16a 1.82±0.12c
50 0.73±0.04b 0.38±0.02b 1.11±0.06b 1.89±0.09bc
100 0.72±0.04b 0.33±0.03bc 1.05±0.07b 2.15±0.30abc
150 0.70±0.04b 0.31±0.02bc 1.01±0.06b 2.22±0.11ab
200 0.66±0.07b 0.29±0.04c 0.95±0.11b 2.29±0.27a

Fig.2

The soluble protein, soluble sugar and proline content in leaves of CDS-1 under PEG-6000 simulated drought stress"

Fig.3

MDA content, and the activities of SOD, POD and CAT in leaves of CDS-1 under PEG-6000 simulated drought stress"

Fig. 4

The HPLC chromatography of six active components for CDS-1 under PEG-6000 simulated drought stress 1. Rosmarinic acid, 2. Salvianolic acid B, 3. Salvianolic acid A, 4. Cryptptanshinone, 5. Tanshinone Ⅰ, 6. Tanshinone ⅡA"

Table 4

The contents of six active components of CDS-1 under PEG-6000 simulated drought stress mg/g"

PEG-6000浓度
PEG-6000 concentration (g/L)
迷迭香酸
Rosmarinic
acid
丹酚酸B
Salvianolic
acid B
丹酚酸A
Salvianolic
acid A
隐丹参酮
Cryptptanshinone
丹参酮Ⅰ
TanshinoneⅠ
丹参酮ⅡA
TanshinoneⅡA
总丹参酮
Total tanshinone
0 (CK) 5.54±0.25c 34.44±1.77a 0.53±0.16b 0.05±0.01c 0.14±0.01b 0.19±0.01c 0.38±0.01b
50 6.00±0.31c 31.60±1.31bc 0.54±0.12b 0.09±0.00a 0.23±0.01a 0.32±0.02a 0.64±0.03a
100 7.64±0.26a 30.00±1.48c 0.58±0.09b 0.07±0.01b 0.24±0.02a 0.28±0.02b 0.59±0.01a
150 8.03±0.36a 34.44±1.12a 0.93±0.17a 0.01±0.00d 0.09±0.00c 0.07±0.01d 0.17±0.01c
200 6.84±0.27b 32.68±0.96ab 0.41±0.09b 0.05±0.01c 0.15±0.03b 0.20±0.02c 0.40±0.05b
[1] 周子超, 侯建华, 甄子龙, 等. 152份向日葵重组自交系苗期抗旱性的鉴定与评价. 作物杂志, 2020(3):47-52.
[2] Hu L X, Wang Z L, Huang B R. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C-3 perennial grass species. Physiologia Plantarum, 2010,139(1):93-106.
doi: 10.1111/j.1399-3054.2010.01350.x pmid: 20070869
[3] 蒲伟凤, 纪展波, 李桂兰, 等. 作物抗旱性鉴定方法研究进展. 河北科技师范学院学报, 2011,25(2):34-39.
[4] Selmar D, Kleinwachter M. Stress enhances the synthesis of secondary plant products:the impact of stress-related over-reduction on the accumulation of natural products. Plant and Cell Physiology, 2013,54(6):817-826.
doi: 10.1093/pcp/pct054
[5] 王微. 土壤水分条件对丹参生长和化学成分含量的影响、机制及其应用基础. 上海:复旦大学, 2014.
[6] 国家药典委员会. 中华人民共和国药典(2015版,一部). 北京: 中国医药科技出版社, 2015.
[7] Dong Y, Morris-Natschke S L, Lee K H. Biosynthesis,total syntheses,and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Natural Product Reports, 2011,28:529-542.
doi: 10.1039/c0np00035c pmid: 21225077
[8] Jiang Y Y, Wang L, Zhang L, et al. Characterization,antioxidant and antitumor activities of polysaccharides from Salvia miltiorrhiza Bunge. International Journal of Biological Macromlecules, 2014,70:92-99.
[9] Bi L, Yan X, Yang Y, et al. The component formula of Salvia Miltiorrhiza and Panax Ginseng induces apoptosis and inhibits cell invasion and migration through targeting PTEN in lung cancer cells. Oncotarget, 2017,8(60):101599-101613.
doi: 10.18632/oncotarget.21354 pmid: 29254189
[10] Gao H, Sun W, Zhao J, et al. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Scientific Reports, 2016,6:33720.
doi: 10.1038/srep33720 pmid: 27666387
[11] Choi H G, Tran P T, Lee J H, et al. Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge. Archires of Pharmacal Research, 2018,41(1):64-70.
[12] Jiang Y, Zhang L, Rupasinghe H P V. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomedicine & Pharmacotherrapy, 2017,85:57-67.
[13] Ali M, Khan T, Fatima K, et al. Selected hepatoprotective herbal medicines:Evidence from ethnomedicinal applications,animal models,and possible mechanism of actions. Phytotherapy Research, 2018,32:199-215.
doi: 10.1002/ptr.5957 pmid: 29047177
[14] Zhao X, Zheng X, Fan T P, et al. A novel drug discovery strategy inspired by traditional medicine philosophies. Science, 2015,347:S38-S40.
[15] 王萌, 张力文, 谢显莉, 等. 丹参新品种‘川丹参1号’. 园艺学报, 2012,39(11):2333-2334.
[16] Wang X, Morris-Natschke S L, Lee K H. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Medicinal Research Reviews, 2007,27(1):133-148.
doi: 10.1002/med.20077 pmid: 16888751
[17] Lin H Y, Lin T S, Wang C S, et al. Rapid determination of bioactive compounds in the different organs of Salvia Miltiorrhiza by UPLC-MS/MS. Journal of Chromatography B, 2019,1104:81-88.
doi: 10.1016/j.jchromb.2018.11.006
[18] 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2003.
[19] 李合生. 现代植物生理学. 4 版. 北京: 高等教育出版社, 2012.
[20] 越世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994(3):207-210.
[21] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[22] 何丽斯, 苏家乐, 刘晓青, 等. 模拟干旱胁迫对高山杜鹃光合生理特性的影响. 苏州科技大学学报(自然科学版), 2011,28(4):62-66.
[23] 贾鑫, 孙窗舒, 李光跃, 等. 干旱胁迫对蒙古黄芪生长和生理生化指标及其黄芪甲苷积累的影响. 西北植物学报, 2018,38(3):501-509.
[24] Fan X W, Li F M, Song L, et al. Defense strategy of old and modern spring wheat varieties during soil drying. Plant Physiology, 2009,136:310-323.
[25] 马少薇, 刘果厚, 王蕾, 等. 干旱胁迫对黄柳雌雄扦插苗生长和生理特性的影响. 西北植物学报, 2109,39(7):1250-1258.
[26] 郑清岭, 杨忠仁, 张凤兰, 等. 沙芥属植物活性氧清除系统对干旱胁迫的响应. 西北植物学报, 2018,38(9):1674-1682.
[27] 宋杰, 李树发, 李世峰, 等. 遮阴对高山杜鹃叶片解剖和光合特性的影响. 广西植物, 2019,39(6):802-811.
[28] Jeon M W, Ali M B, Hahn E J, et al. Photosynthetic pigments,morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environmental and Experimental Botany, 2006,55(1/2):183-194.
[29] 王贺正, 沈思涵, 张冬霞, 等. 水杨酸对水分胁迫下小麦幼苗生理生化特性的影响. 作物杂志, 2020(2):168-171.
[30] 左小容, 梁宗锁, 田胄, 等. 持续干旱胁迫及复水对丹参幼苗抗氧化酶活性的影响. 西北农业学报, 2011,20(2):110-113.
[31] Hojati M, Modarres-Sanavy S A M, Karimi M, et al. Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta Physiologiae Plantarum, 2011,33:105-112.
doi: 10.1007/s11738-010-0521-y
[32] 赵亚虹. 蜡梅过氧化物酶体生成蛋白基因CpPEX22的克隆及功能初步分析. 重庆:西南大学, 2013.
[33] 徐贝贝, 刘楠, 任海, 等. 西沙群岛草海桐的抗逆生物学特性. 广西植物, 2018,38(10):1277-1285.
[34] Shi M, Kwok K W, Wu J Y. Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnology and Applied Biochemistry, 2007,46:191-196.
doi: 10.1042/BA20060147 pmid: 17014425
[35] Yang D F, Liang Z S, Liu J L. LC fingerprinting for assessment of the quality of the lipophilic components of Salvia miltiorrhiza. Chromatographia, 2009,69(5/6):555-560.
doi: 10.1365/s10337-008-0918-6
[36] Li G, Yu F, Wang Y, et al. Comparison of the chromatographic fingerprint,multicomponent quantitation and antioxidant activity of Salvia miltiorrhiza Bge. between sweating and nonsweating. Biomedical Chromatography, 2018,32(6):e4203.
doi: 10.1002/bmc.4203 pmid: 29399849
[37] Meim X D, Cao Y F, Che Y Y, et al. Danshen:a phytochemical and pharmacological overview. Chinese Journal of Natural Medicines, 2019,17(1):67-88.
[38] Ożarowski M, Piasecka A, Gryszczyńska A, et al. Determination of phenolic compounds and diterpenes in roots of Salvia miltiorrhiza and Salvia przewalskii by two LC-MS tools:multi-stage and high resolution tandem mass spectrometry with assessment of antioxidant capacity. Phytochemistry Letters, 2017,20:331-338.
doi: 10.1016/j.phytol.2016.12.001
[1] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
[2] Han Duohong, Wang Enjun, Zhang Yong, Wang Hongxia, Wang Yan, Wang Fu. Effects of Exogenous Spermidine and Glycine Betaine on Seed Germination and Physiological Characteristics of Isatis indigotica Fort. Seedlings under Drought Stress [J]. Crops, 2021, 37(1): 118-123.
[3] Yang Juan, Jiang Yangming, Zhou Fang, Zhang Jun, Luo Haideng, Tian Shanjun. Effects of PEG Simulated Drought Stress on Seedling Morphology and Physiological Characteristics of Different Drought-Resistance Maize Varieties [J]. Crops, 2021, 37(1): 82-89.
[4] Jian Liqun, Zhang Yifei, Yang Kejun, Wang Yufeng, Chen Tianyu, Zhang Jiwei, Zhang Jinsong, Li Qing, Liu Tianhao, Xiao Shanshan, Peng Cheng, Wang Baosheng. Effects of Low Temperature under Different Phases between Sowing and Seedling Periods on Growth and Physiological Resistance of Maize Seedlings [J]. Crops, 2020, 36(6): 61-68.
[5] Li Guolong, Wu Haixia, Sun Yaqing. Construction of RNAi Expression Vector of BvWRKY23 Gene in Sugar Beet [J]. Crops, 2020, 36(5): 41-47.
[6] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
[7] Riyu Wen,Jianxia Liu,Zhenhua Zhang,Yaodong Guo,Xuyao Dai,Qingguo Jiang,Lisheng Fan. Effects of Drought Stress on Germination and Physiological Characteristics of Different Quinoa Seeds [J]. Crops, 2019, 35(1): 121-126.
[8] Xia Wu,Deguo Lü,Guodong Du,Fengjun Yang. Cold Resistance Physiology Variance Analysis in Grafting and Tissue Culturing Seedlings of Sweet Cherry [J]. Crops, 2019, 35(1): 168-174.
[9] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[10] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[11] Jiao Zhang,Qi Wu,Yufei Zhou,Yitao Wang,Ruidong Zhang,Ruidong Huang. Effects of Drought and Rewatering at Seedling and Filling Stages on Photosynthetic Characteristics and Dry Matter Production of Sorghum [J]. Crops, 2018, 34(3): 148-154.
[12] Guolong Li,Yaqing Sun,Shiqin Shao,Yongfeng Zhang. Response of Antioxidant System to Drought Stress in Sugar Beet Leaves at Seedling Stage [J]. Crops, 2017, 33(5): 73-79.
[13] Xiyu Hao,Hongdan Wang,Zhichao Yin,Jie Liang,Fengxiang Yin,Jianjun Hao. Effects of PEG Stress on Drought Resistance at Seedling Stage of Adzuki Beans and the Establishment of Drought Resistance Identification System [J]. Crops, 2017, 33(4): 134-142.
[14] ,Lili Zhang,Ying Shi. Screening of Drought Resistant Germplasm Resources in Potato [J]. Crops, 2017, 33(4): 72-77.
[15] Ning Yang,Botong Zhao,Yuzhuo Bao,Yan Lü,Kankan Peng,Yu Tian,Junhong Wang,Jing Meng,Jing Cang. Effects of Exogenous ABA and Its Inhibitor Fluridone on Cold Resistance Indicators of Winter Wheat Tiller Node [J]. Crops, 2017, 33(4): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[6] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[7] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[8] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China[J]. Crops, 2018, 34(1): 147 -151 .
[9] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[10] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization[J]. Crops, 2018, 34(1): 83 -87 .