Crops ›› 2025, Vol. 41 ›› Issue (1): 187-193.doi: 10.16035/j.issn.1001-7283.2025.01.023

;

Previous Articles     Next Articles

Effects of Nitrogen Application on Yield, Nitrogen Accumulation, and Interspecific Relationships of Oat Intercropped with Clover

Han Xue1(), Wang Ying1, Han Dongyu1, Zhao Xinyao1, Li Xiaoting2, Zhang Hongjie1, Li Lijun1()   

  1. 1Agricultural College of Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    2College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2023-11-09 Revised:2024-01-08 Online:2025-02-15 Published:2025-02-12

Abstract:

To clarify the effect of nitrogen application on the productivity of oat intercropped with clover system, we set up three nitrogen application modes, no nitrogen application (N0), 75 (N75), and 150 kg/ha (N150) under three cropping patterns, oat intercropping with clover, oat monocropping, and clover monocropping. We explored the effects of different treatments on crop nitrogen accumulation, forage yield, and interspecific relationships. The results showed that intercropped oats with clover significantly increased oat forage yield by 14.45%-29.26%, and only decreased clover forage yield by 1.60%-6.97%. Nitrogen fertilization increased forage yield and intercropping productivity of oats and clover, land equivalent ratios of N0, N75, and N150 were 1.07, 1.15, and 1.19, respectively; N75 treatment significantly increased oat forage yield by 18.83% to 29.99% compared to N0, and N150 treatment only increased oat yield by 4.60% to 8.01% compared to N75; oats intercropped with clover significantly increased crop nitrogen accumulation compared to monocropping, in which oats increased by 16.47%-23.09%, and clover increased by 20.85%-26.60%; evaluation indexes of competitiveness indicated that oats in intercropping system had a higher yield advantage over clover, it showed gains compared to monocropping, and showed higher productivity in the intercropping system after N application. In comparison to monocropping, oats with clover demonstrated a greater yield and N accumulation in intercropping system. With N application, intercropping productivity might be further increased, making it a viable option for promotion in the area along the Yinshan Mountains in Inner Mongolia.

Key words: Intercropping, Nitrogen application, Yield, Nitrogen accumulation, Interspecific relationship

Fig.1

Forage yields of oat and clover under different treatments The different lowercase letters indicate significant differences (P < 0.05). The same below."

Fig.2

Plant nitrogen accumulation of oat and clover under different treatments"

Table 1

Effects of different nitrogen treatments on LER and K in oat and clover intercropping system"

施氮水平
Nitrogen application level
土地当量比LER 相对拥挤系数K
LERo LERs LER Ko Ks K
N0 0.76±0.01b 0.31±0.01a 1.07±0.03c 1.62±0.10c 0.90±0.05a 1.45±0.04c
N75 0.83±0.02a 0.32±0.01a 1.15±0.02b 2.54±0.29b 0.93±0.04a 2.38±0.33b
N150 0.86±0.03a 0.33±0.02a 1.19±0.01a 3.12±0.03a 0.98±0.02a 3.04±0.04a

Table 2

Effects of different nitrogen treatments on A and CR in oat and clover intercropping system"

施氮水平
Nitrogen
application level
侵占力
A
竞争比率
CR
Ao As CRo CRs
N0 0.41±0.01b -0.41±0.01a 1.23±0.07a 0.81±0.04a
N75 0.45±0.01a -0.45±0.01a 1.31±0.04a 0.76±0.02a
N150 0.47±0.00a -0.47±0.00b 1.31±0.02a 0.76±0.01a

Table 3

Effects of different nitrogen treatments on ALY and SPI in oat and clover intercropping system"

施氮水平
Nitrogen application level
实际产量损失AYL 系统生产力指数
SPI
AYLo AYLs AYL
N0 0.14±0.02c -0.07±0.04a 0.08±0.02c 4247.31±169.66b
N75 0.25±0.02b -0.05±0.03a 0.21±0.05b 5422.08±230.84b
N150 0.29±0.00a -0.02±0.01a 0.28±0.01a 5852.07±220.68a

Table 4

Effects of different nitrogen treatments on NER and N-RC in oat and clover intercropping system"

施氮水平
Nitrogen application level
氮素当量比NER 氮素相对竞争力N-RC
NERo NERs NER N-RCo N-RCs N-RC
N0 0.77±0.06b 0.40±0.01a 1.18±0.06b 1.16±0.09a 1.21±0.03a -0.05±0.07a
N75 0.81±0.02a 0.41±0.02a 1.23±0.02a 1.22±0.03a 1.24±0.06a -0.02±0.08a
N150 0.82±0.01a 0.42±0.01a 1.24±0.02a 1.23±0.01a 1.27±0.04a -0.04±0.04a
[1] 张德, 龙会英, 金杰, 等. 豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响. 草业学报, 2018, 27(10):15-22.
[2] Justes E, Bedoussac L, Dordas C, et al. The 4C approach as a way to understand species interactions determining intercropping productivity. Frontiers of Agricultural Science and Engineering, 2021, 8(3):387-399.
[3] 肖焱波, 李隆, 张福锁. 豆科//禾本科间作系统中氮营养研究进展. 中国农业科技导报, 2003, 5(6):44-49.
[4] Hauggaard-Nielsen H, Gooding M, Ambus P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 2009, 113(1):64-71.
[5] Kessel V C, Hartley C. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?. Field Crops Research, 2000, 65(2/3):165-181.
[6] Sekiya N, Yano K. Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift?— Hydrogen stable isotope investigation of xylem waters. Field Crops Research, 2004, 86(2/3):167-173.
[7] 李隆, 李晓林, 张福锁, 等. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000, 6(2):140-146.
[8] 冯晓敏. 燕麦‖大豆、燕麦‖绿豆系统生理生态机制研究. 北京: 中国农业大学, 2015.
[9] 柴继宽, 赵桂琴, 张丽睿, 等. 施氮及间作对燕麦干物质积累、分配和氮素吸收利用的影响. 中国草地学报, 2023, 45(1):88-98.
[10] 张妍, 王利立, 柴强, 等. 施氮水平对大麦间作豌豆种间竞争的调控效应. 农业现代化研究, 2014, 35(3):381-384.
[11] 王彩梅. 白三叶草在现代生态农业中的应用. 现代园艺, 2013(3):32-33.
[12] 柴华, 李红, 黄新育, 等. 白三叶草种质的优良特性及利用价值. 养殖技术顾问, 2013(1):194.
[13] 唐柳办, 王家豪, 王雷挺, 等. 岩溶山区玉米白三叶间作对土壤养分及作物生产性能的影响. 中国草地学报, 2022, 44(5):31-39.
[14] 沈新平, 陈后庆, 庄恒扬, 等. 小麦―白三叶草复合群体中种群关系的初步研究. 生态学杂志, 1999, 18(1):20-24.
[15] 黄宗昌, 师尚礼, 汪睿, 等. 不同饲草作物间作模式对地上生物量及竞争力的影响. 草业科学, 2020, 37(11):2284-2292.
[16] 任媛媛, 王志梁, 王小林, 等. 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制. 生态学报, 2015, 35(12):4168-4177.
[17] 廖敦平. 玉米―大豆带状套作下不同行距配置的系统评定. 成都:四川农业大学, 2015.
[18] Agegnehu G, Ghizaw A, Sinebo W. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. European Journal of Agronomy, 2006, 25 (3):202-207.
[19] Willey R W. Resource use in intercropping systems. Agricultural Water Management, 1990, 17(1):215-231.
[20] 韩建国, 马春晖, 毛培胜, 等. 播种比例和施氮量及刈割期对燕麦与豌豆混播草地产草量和质量的影响. 草地学报, 1999, 7(2):87-94.
[21] 王林, 王琦, 张恩和, 等. 间作与施氮对秸秆覆盖作物生产力和水分利用效率的影响. 中国生态农业学报, 2014, 22(8):955-964.
[22] 王乐, 张玉霞, 于华荣, 等. 氮肥对沙地燕麦生长特性及产量的影响. 草业科学, 2017, 34(7):1516-1521.
[23] 肖焱波, 段宗颜, 金航, 等. 小麦/蚕豆间作体系中的氮节约效应及产量优势. 植物营养与肥料学报, 2007, 13(2):267-271.
[24] 李学博, 李立军, 马乃娇. 油菜燕麦混播对饲草产量品质及土壤酶活性的影响. 土壤通报, 2020, 51(4):897-904.
[25] 张小明, 来兴发, 杨宪龙, 等. 施氮和燕麦/箭筈豌豆间作比例对系统干物质量和氮素利用的影响. 植物营养与肥料学报, 2018, 24(2):489-498.
[26] 周琦, 李岚涛, 张露露, 等. 氮肥和播种量互作对冬小麦产量、生长发育和生态场特性的影响. 作物学报, 2023, 49(11):3100-3109.
[27] 张银燕, 高丽红, 周文萍, 等. 间作三叶草对大田甜玉米产量品质及土壤矿质氮的影响. 华北农学报, 2010, 25(增1):236-238.
[28] Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant and Soil, 2004, 262 (1/2):45-54.
[29] 杨金虎, 李立军, 张艳丽, 等. 科尔沁沙地燕麦间作箭筈豌豆与施肥对饲草养分累积、产量及水分利用的影响. 西北农业学报, 2023, 32(9):1-12.
[30] 张丽睿, 柴继宽, 赵桂琴, 等. 施氮制度对燕麦‖豌豆间作体系产量及种间竞争力的影响. 草原与草坪, 2022, 42(4):106- 114.
[31] 孙振中, 欧阳竹, 刘丽平, 等. 行距配置对冬小麦/白三叶草间作系统小麦群体结构和光合有效辐射的影响. 中国生态农业学报, 2011, 19(3):554-560.
[32] 宫香伟. 糜子/绿豆间作模式下糜子群体对光、水、肥资源的响应及减氮增效机制研究. 杨凌:西北农林科技大学, 2021.
[33] 任家兵, 张梦瑶, 肖靖秀, 等. 小麦||蚕豆间作提高间作产量的优势及其氮肥响应. 中国生态农业学报(中英文), 2020, 28(12):1890-1900.
[34] 王肇钧, 张刚, 王磊, 等. 施氮对白三叶与黑麦草种间竞争的影响研究. 东北师大学报(自然科学版), 2022, 54(1):107-112.
[35] Sun B R, Gao Y Z, Yang H J, et al. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant and Soil, 2018, 439:145-161.
[36] 肖宇, 刘青松, 阎旭东, 等. 苜蓿―玉米套作种植竞争关系及空间结构分析. 中国草地学报, 2020, 42(3):133-140.
[37] 封亮. 红壤旱地玉米大豆间作田间配置方式对作物产量、养分吸收及种间关系的影响. 南昌:江西农业大学, 2021.
[38] 刘鑫. 玉豆带状间作系统光能分布、截获与利用研究. 雅安:四川农业大学, 2016.
[39] 杨文亭, 王晓维, 王建武. 豆科―禾本科间作系统中作物和土壤氮素相关研究进展. 生态学杂志, 2013, 32(9):2480-2484.
[40] 刘振洋, 吴鑫雨, 汤利, 等. 小麦蚕豆间作体系氮素吸收累积动态及其种间氮素竞争关系. 植物营养与肥料学报, 2020, 26(7):1284-1294.
[1] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[2] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[3] Ji Jinghong, Liu Shuangquan, Ma Xingzhu, Hao Xiaoyu, Zheng Yu, Zhao Yue, Wang Xiaojun, Kuang Enjun. Effects of Different Controlled-Release Urea on Agronomic Traits, Yield and Nitrogen Use Efficiency of Cold Region Rice [J]. Crops, 2025, 41(2): 149-154.
[4] Mi Dongming, Zhou Zuoyan, Zhang Xiaoyan, Fan Zhenjie, Sun Peijie, Huang Xiao, Ren Aixia, Sun Min, Ren Yongkang. Effects of Nitrogen Application Rate on Matter Transfer and Protein Content in Black Wheat [J]. Crops, 2025, 41(2): 155-161.
[5] Zhang Jili, He Jinghao, Wei Jianyu, Huang Chongjun, Wang Wei, Cai Yixia. Effects of Application Period of Microbial Inoculants on Rhizosphere Soil Bacterial Diversity, Enzyme Activity and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(2): 162-171.
[6] Jin Dandan, Sui Shijiang, Chen Yue, Li Bo, Qu Hang, Gong Liang. Effects of Straw Returning with Nitrogen Application Reduction on Yield and Nitrogen Utilization of Rice in Liaohe Plain [J]. Crops, 2025, 41(2): 172-179.
[7] Li Yunxia, Yang Jiashuo, Li Yangyang, Xiang Shipeng, Yu Jinlong, Li Bin, Zheng Weiwei, Liu Lu. Effects of Different Transplanting Periods on the Growth, Development and Yield Quality of Flue-Cured Tobacco in Tobacco-Rice Rotation Area [J]. Crops, 2025, 41(2): 222-227.
[8] Li Junzhi, Dou Shuang, Wang Xiaodong, Zhang Meng, Xiao Jibing. Effects of Different Intercropping Patterns on Sorghum Growth and Development [J]. Crops, 2025, 41(2): 234-240.
[9] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[10] Luo Jianke, Zhang Kehou, Wang Zeyu, Zhang Pingzhen, Nan Ming. Research on the Production Performance of 18 Oat Varieties (Lines) in the Irrigation Area along the Yellow River in Baiyin City [J]. Crops, 2025, 41(2): 93-100.
[11] Long Weihua, Xian Zhihui, Zhang Zheng, Alibieligen·Hazitai , Zulehumaer·Wusimanjiang , Pu Huiming, Hu Maolong. Adaptability Analysis of Non-Transgenic Herbicide-Resistant Hybrid Rapeseed Lines from Lower Reaches of the Yangtze River in Ili River Valley, Xinjiang [J]. Crops, 2025, 41(1): 111-116.
[12] Chu Zhaokang, Wang Shiji, Bi Jianjian, Zhang Lin, Peng Chen, Chen Xiang, Wu Wenming. Effects of Sowing Dates on Yield and Filling Characteristics of Summer Maize in the Central Yangtze-Huaihe Region [J]. Crops, 2025, 41(1): 117-122.
[13] Zhang Kaikai, Zhao Deming, Ma Juhua, Bai Pengjun, Ma Peng, Chen Hui, Xu Wenjie, Huang Caixia, Liu Zhongyu. Effects of Furrow Straw Mulching on Soil Hydrothermal Characteristics and Yield of Potato under Dry Cultivation [J]. Crops, 2025, 41(1): 139-146.
[14] Lü Shuli, Ding Fang, Zheng Dongfang. Response of Photosynthetic Characteristics, Yield and Quality of Sesame Capsule to Different Chemical Ripening Agents [J]. Crops, 2025, 41(1): 155-161.
[15] Zhou Miaomiao, He Ruitong, Li Lan, Wang Hongxin, Peng Haoyuan, Zhang Yubo, Zhang Dan, Wang Jinbin, Luo Xinning, Qi Bingqin. Effects of Growth Regulators “EDAH” on Photosynthetic Characteristics and Yield Formation of Maize under High Planting Density [J]. Crops, 2025, 41(1): 162-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .