Crops ›› 2018, Vol. 34 ›› Issue (1): 1-8.doi: 10.16035/j.issn.1001-7283.2018.01.001

    Next Articles

Progress in Studying Mechanism of microRNA in Stress Response in Higher Plants

Xiong Weijiao1,Wang Yalun1,Yao Shaochang1,Pan Chunliu1,Xiao Dong1,2,Wang Aiqin1,2,He Longfei1,2   

  1. 1 College of Agriculture, Guangxi University, Nanning 530000, Guangxi, China
    2 Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning 530000, Guangxi, China
  • Received:2017-09-05 Revised:2017-12-25 Online:2018-02-20 Published:2018-08-24

Abstract:

MicroRNA (miRNA) is a class of endogenous small molecule non-coding RNA with length about 20-24bp, which widely exists in eukaryotes. The mature miRNA is bound to complementary loci of target genes, regulates negatively the expression of target gene, and involves in plant growth and development, signal transduction and stress response. In this paper, the advanced progress about the effects and regulationary mechanisms of miRNA were reviewed under biotic stresses and abiotic stresses (including heavy metals, drought, low temperature, salt, and heat), and the problems and the research in the future are suggested.

Key words: MicroRNA, Higher plant, Stress, Mechanism, Progress

Table 1

miRNAs and its regulatory pathways response to aluminium stress"

miRNA 靶基因
Target gene
靶基因功能
Function of target gene
参考文献
Reference
miR160 ARF10、ARF16 根冠生长 [22]
miR166 HD-ZIP家族 侧根形成 [27]
miR390 tasiRNA ARF2、3、4 [23-24]
miR393b TIR1 CSF复合体 [25-26]
miR399d UBC ROS [30-31]
miR398 CSD PCD [32-33]
miR808 岩藻糖基转移酶 细胞壁糖形成 [20,28]

Table 1

miRNAs and its regulatory pathways response to cadmium stress"

miRNA 靶基因
Target gene
靶基因功能
Function of target gene
参考文献
Reference
miR395 SUITR2.1 硫酸盐转运蛋白 [6]
APS1、3、4 ATP硫酸化酶 [6]
miR164 MG 氧化胁迫 [45]
miR156 GGT 植物螯合肽 [46]
miR159 ABC 重金属稳态 [47-49]
miR167 NRAMP 重金属稳态 [47-49]
miR5139 ABC转运蛋白家族 镉转运 [50]
[1] Gielen H, Remans T, Vangronsveld J , et al. MicroRNAs in metal stress: specific roles or secondary responses?. International Journal of Molecular Sciences, 2012,13(12):15826-15847.
doi: 10.3390/ijms131215826 pmid: 3546664
[2] Reinhart B J, Weinstein E G, Rhoades M W , et al. MicroRNAs in plants. Genes & Development, 2002,16(13):1616-1626.
[3] Sunkar R, Zhu J K . Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004,16(8):2001-2019.
doi: 10.1105/tpc.104.022830
[4] Xiong J, Lu H, Lu K X , et al. Cadmium decreases crown root number by decreasing endogenous nitric oxide,which is indispensable for crown root primordia initiation in rice seedlings. Planta, 2009,230(4):599-610.
doi: 10.1007/s00425-009-0970-y
[5] Chen L, Wang T, Zhao M , et al. Identification of aluminum-responsive microRNAs in Medicago truncatula,by genome-wide high-throughput sequencing. Planta, 2012,235(2):375-386.
doi: 10.1007/s00425-011-1514-9
[6] Huang S Q, Xiang A L, Che L L , et al. A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnology Journal, 2010,8(8):887-899
doi: 10.1111/j.1467-7652.2010.00517.x pmid: 20444207
[7] Liu Q, Zhang H . Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. Journal of Agricultural & Food Chemistry, 2012,60(26):6524-6536.
[8] Srivastava S, Srivastava A K, Suprasanna P , et al. Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. Journal of Experimental Botany, 2013,64(1):303-315.
doi: 10.1093/jxb/ers333 pmid: 202020202020202020
[9] Niu Q W, Lin S S, Reyes J L , et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 2006,24(11):1420-1428.
doi: 10.1038/nbt0207-254c pmid: 17057702
[10] Qu J, Ye J, Fang R . Artificial microRNA-mediated virus resistance in plants. Journal of Virology, 2007,81(12):6690-6699.
doi: 10.1128/JVI.02457-06 pmid: 1900123
[11] Khraiwesh B, Zhu J K, Zhu J . Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta, 2012,1819(2):137-148.
doi: 10.1016/j.bbagrm.2011.05.001 pmid: 3175014
[12] Li F, Pignatta D, Bendix C , et al. MicroRNA regulation of plant innate immune receptors. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(5):1790-1795.
doi: 10.1073/pnas.1118282109
[13] Inal B, Türktaş M, Eren H , et al. Genome-wide fungal stress responsive miRNA expression in wheat. Planta, 2014,240(6):1287-1298.
doi: 10.1007/s00425-014-2153-8 pmid: 25156489
[14] Wu F, Shu J, Jin W . Identification and validation of miRNAs associated with the resistance of maize (Zea mays L. ) to Exserohilum turcicum. PLoS ONE, 2014,9(1):e87251.
doi: 10.1371/journal.pone.0087251
[15] 卢远根 . 水稻中与水稻-稻瘟病菌互作相关的microRNA初步研究. 雅安:四川农业大学, 2014.
[16] 梅俊, 张维林, 王涛 , 等. 水稻叶片中多种胁迫响应基因OsmiR1858a的预测及其表达分析. 植物生理学报, 2015(7):1117-1124.
doi: 10.13592/j.cnki.ppj.2015.0101
[17] Chen M, Cao Z . Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina. BMC Genomics, 2015,16(1):e696.
doi: 10.1186/s12864-015-1891-8
[18] Matsumoto H . Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology, 2000,200:1-46.
doi: 10.1016/S0074-7696(00)00001-2
[19] Zhou Y, Fei G, Ran L , et al. De novo,sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genomics, 2012,13(1):e266.
[20] Lima J C, Arenhart R A, Margis-Pinheiro M , et al. Aluminum triggers broad changes in microRNA expression,in rice roots. Genetics & Molecular Research, 2011,10(4):2817-2832.
doi: 10.4238/2011.November.10.4 pmid: 22095606
[21] Zeng Q Y, Yang C Y, Ma Q B , et al. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biology, 2012,12(1):e182.
doi: 10.1186/1471-2229-12-182 pmid: 35195641
[22] Wang J W, Wang L J, Mao Y B , et al. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 2005,17(8):2204-2216.
doi: 10.1105/tpc.105.033076
[23] Marin E, Jouannet V, Herz A , et al. miR390,Arabidopsis TAS3 tasiRNAs,and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell, 2010,22(4):1104-1117.
doi: 10.1105/tpc.109.072553
[24] Yoon E K, Yang J H, Lim J , et al. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Research, 2010,38(4):1382-1391.
doi: 10.1093/nar/gkp1128
[25] Navarro L, Jones J D G . A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006,312(5772):436-439.
doi: 10.1126/science.1126088 pmid: 16627744
[26] Xie Q, Frugis G, Colgan D , et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Development, 2000,14(23):3024-3036.
doi: 10.1101/gad.852200 pmid: 11114891
[27] Nagasaki H, Itoh J, Hayashi K , et al. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(37):14867-14871.
doi: 10.1073/pnas.0704339104 pmid: 17804793
[28] Vanzin G F, Madson M, Carpita N C , et al. The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(5):3340-3345.
doi: 10.1073/pnas.052450699
[29] 朱晓芳 . 拟南芥细胞壁半纤维素结合铝的机制及其调控. 杭州:浙江大学, 2014.
[30] 应颖慧 . 水稻磷信号重要因子OsPHO2的互作蛋白的鉴定和功能分析. 杭州:浙江大学, 2013.
[31] Sharma P, Dubey R S . Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports, 2007,26(11):2027-2038.
doi: 10.1007/s00299-007-0416-6
[32] Beauclair L, Yu A, Bouché N . microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant Journal, 2010,62(3):454-462.
[33] 何虎翼 . 一氧化氮调节铝诱导花生根尖细胞程序性死亡机制的研究. 南宁:广西大学, 2015.
[34] Sandalio L M, Dalurzo H C, Gómez M , et al. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 2001,52(364):2115-2126.
doi: 10.1093/jexbot/52.364.2115
[35] Rodríguezserrano M, Romeropuertas M C, Pazmiño D M , et al. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species,nitric oxide,and calcium. Plant Physiology, 2009,150(1):229-243
doi: 10.1104/pp.108.131524
[36] 丁艳菲 . 水稻镉胁迫应答相关microRNA的分离与功能研究. 杭州:浙江大学, 2012.
[37] 邱宗波, 袁萌萌, 张曼曼 , 等. 小麦镉胁迫相关microRNA的差异表达. 贵州农业科学, 2015(6):214-217.
[38] 刘海丽 . miR192、miR166及其靶基因HD-Zip对水稻镉胁迫应答的功能研究. 杭州:中国计量学院, 2013.
[39] 张柳伟 . miR395调节油菜(Brassica napus)耐镉功能的研究. 南京:南京农业大学, 2012.
doi: 10.7666/d.Y2360356
[40] Zhou Z S, Song J B, Yang Z M . Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. Journal of Experimental Botany, 2012,63(12):4597-4613.
doi: 10.1093/jxb/ers136
[41] Ding Y, Zhen C, Cheng Z . Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of Experimental Botany, 2011,62(10):3563-3573.
doi: 10.1093/jxb/err046 pmid: 21362738
[42] Park J, Song W, Ko D , et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant Journal, 2012,69(2):278-288.
doi: 10.1111/j.1365-313X.2011.04789.x pmid: 21919981
[43] Ding Y, Qu A, Gong S , et al. Molecular identification and analysis of Cd-responsive microRNAs in rice. Journal of Agricultural & Food Chemistry, 2013,61(47):11668-11675.
doi: 10.1021/jf401359q pmid: 23909695
[44] Quan G, Chen Z P, Yu X L , et al. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Science, 2017,261:28-37.
doi: 10.1016/j.plantsci.2017.05.001
[45] Cheng N H, Liu J Z, Liu X , et al. Arabidopsis monothiol glutaredoxin,AtGRXS17,is critical for temperature-dependent postembryonic growth and development via modulating auxin response. Journal of Biological Chemistry, 2011,286(23):20398-20406.
doi: 10.1074/jbc.M110.201707
[46] Cobbett C S . Phytochelatin biosynthesis and function in heavy-metal detoxification. Current Opinion Plant Biology, 2000,3:211-216.
doi: 10.1016/S1369-5266(00)80067-9 pmid: 10837262
[47] Bovet L, Eggmann T, Meylan-Bettex M , et al. Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell & Environment, 2003,26(3):371-381.
doi: 10.1046/j.1365-3040.2003.00968.x
[48] Talke I N, Hanikenne M, Krämer U . Zinc-dependent global transcriptional control,transcriptional deregulation,and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology, 2006,142(1):148-167.
doi: 10.1104/pp.105.076232
[49] Krämer U, Talke I N, Hanikenne M . Transition metal transport. FEBS Letters, 2007,581(12):2263-2272.
doi: 10.1016/j.febslet.2007.04.010
[50] Shen C, Huang Y Y, He C T , et al. Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatica,Forsk. cultivars with different cadmium accumulation capacities. Plant Physiology & Biochemistry, 2017,111:329-339.
[51] Zhou M, Li D, Li Z , et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiology, 2013,161(3):1375-1391.
doi: 10.1104/pp.112.208702
[52] Zhang N, Yang J, Wang Z , et al. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS ONE, 2014,9(4):e95489.
doi: 10.1371/journal.pone.0095489
[53] Wang M, Wang Q, Zhang B . Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene, 2013,530(1):26-32.
doi: 10.1016/j.gene.2013.08.009
[54] Hackenberg M, Gustafson P, Langridge P , et al. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnology Journal, 2015,13(1):2-13.
doi: 10.1111/pbi.2014.13.issue-1
[55] Bhardwaj A R, Joshi G, Pandey R , et al. A genome-wide perspective of miRNAome in response to high temperature,salinity and drought stresses in Brassica juncea (Czern) L. PLoS ONE, 2014,9(3):e92456.
doi: 10.1371/journal.pone.0092456
[56] Hwang E W, Shin S J, Yu B K , et al. miR171 family members are involved in drought response in Solanum tuberosum. Journal of Plant Biology, 2011,54(1):43-48.
doi: 10.1007/s12374-010-9141-8
[57] Trindade I, Capitão C, Dalmay T , et al. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta, 2010,231(3):705-716.
doi: 10.1007/s00425-009-1078-0 pmid: 20012085
[58] Kantar M, Lucas S J, Budak H . miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 2011,233(3):471-484.
doi: 10.1007/s00425-010-1309-4 pmid: 21069383
[59] Han Y, Zhang X, Wang W , et al. The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS ONE, 2013,8(11):e73541.
doi: 10.1371/journal.pone.0073541
[60] Ferdous J, Hussain S S, Shi B . Role of microRNAs in plant drought tolerance. Plant Biotechnology Journal, 2015,13(3):293-305.
doi: 10.1111/pbi.12318 pmid: 25583362
[61] Behnam B, Ehsan M F, Nava N , et al. MicroRNA signatures of drought signaling in rice root. PLoS ONE, 2016,11(6):e0156814.
doi: 10.1371/journal.pone.0156814 pmid: 4898717
[62] Liu P P, Montgomery T A, Fahlgren N , et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant Journal for Cell & Molecular Biology, 2007,52(1):133-146.
[63] Hamza NB, Sharma N, Tripathi A , et al. MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expression Patterns, 2016(20):88-98.
[64] Arshad M, Feyissa B A, Amyot L , et al. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science, 2017,258:122-136.
doi: 10.1016/j.plantsci.2017.01.018
[65] 周玉飞 . 木薯低温诱导miRNA及靶基因的功能分析. 海口:海南大学, 2011.
[66] Li M Y, Wang F, Xu Z S , et al. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. BMC Genomics, 2014,15(1):e242.
doi: 10.1186/1471-2164-15-242
[67] 张玥 . 低温胁迫下茶树microRNA及其靶基因的识别、鉴定与差异表达分析. 南京:南京农业大学, 2014.
[68] Sunkar R, Chinnusamy V, Zhu J , et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 2007,12(7):301-309.
doi: 10.1016/j.tplants.2007.05.001 pmid: 17573231
[69] 王丽丽, 赵韩生, 孙化雨 , 等. 胁迫条件下毛竹miR164b及其靶基因PeNAC1表达研究. 林业科学研究, 2015,28(5):605-611.
doi: 10.3969/j.issn.1001-1498.2015.05.001
[70] Song G, Zhang R, Zhang S , et al. Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genomics, 2017,18(1):e212.
doi: 10.1186/s12864-017-3556-2 pmid: 5330121
[71] Liu H H, Tian X, Li Y , et al. Microarray-based analysis of stress-regulated micro RNA in Arabidopsis thaliana. RNA, 2008,14(5):836-843.
doi: 10.1261/rna.895308
[72] Buhtz A, Springer F, Chappell L , et al. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant Journal for Cell & Molecular Biology, 2008,53(5):739-749.
[73] Jia X Y, Wang W X, Ren L G , et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Molecular Biology, 2009,71(1):51-59.
doi: 10.1007/s11103-009-9508-8
[74] Jooyeol K, Kyungjin K, Hyunju J , et al. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE protein3 mRNA. Plant & Cell Physiology, 2010,51(6):1079-1083.
[75] Ding D, Zhang L, Wang H , et al. Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 2009,103(1):29-38.
doi: 10.1093/aob/mcn205 pmid: 2707283
[76] Gao P, Bai X, Yang L , et al. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta, 2010,231(5):991-1001.
doi: 10.1007/s00425-010-1104-2 pmid: 20135324
[77] 曹林 . 高通量测序和降解组分析白花泡桐盐胁迫相关microRNAs. 郑州:河南农业大学, 2015.
[78] Xie Z, Kasschau K D, Carrington J C . Negative feedback regulation of Dicer-Like 1,in Arabidopsis,by microRNA-Guided mRNA degradation. Current Biology, 2013,13(9):784-789.
[79] Gao H, Li P, Chen S , et al. The heterologous expression in Arabidopsis of a Chrysanthemum Cys2/His2 zinc finger protein gene confers salinity and drought tolerance. Planta, 2012,235(5):979.
doi: 10.1007/s00425-011-1558-x
[80] Bita C E, Tom G . Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 2013,4(4):e273.
[81] 冯静弦, 汪启明, 胡琪 , 等. 拟南芥中热胁迫相关microRNA的差异表达. 湖南农业科学, 2012(3):10-13.
[82] 张晶, 戴超, 李敏敏 , 等. 高温胁迫对贮藏期甜橙果实品质的影响及相关miRNA的响应. 中国食品学报, 2017(6):131-137.
doi: 10.16429/j.1009-7848.2017.06.018
[83] 刘海珍 . 匍匐翦股颖高温响应microRNAs的鉴定及差异表达分析. 北京:北京林业大学, 2016.
[84] Kruszka K, Pacak A, Swida-Barteczka A , et al. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. Journal of Experimental Botany, 2014,65(20):6123-6135.
doi: 10.1093/jxb/eru353
[85] Reyes J L, Chua N H . ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant Journal for Cell & Molecular Biology, 2007,49(4):592-606.
[86] Wang Y, Sun F, Cao H , et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE, 2012,7(11):e48445.
doi: 10.1371/journal.pone.0048445
[87] Li W X, Oono Y, Zhu J , et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 2008,20(8):2238-2251.
doi: 10.1105/tpc.108.059444
[88] Mahale B M, Fakrudin B, Ghosh S , et al. LNA mediated in situ hybridization of miR171 and miR397a in leaf and ambient root tissues revealed expressional homogeneity in response to shoot heat shock in Arabidopsis thaliana. Journal of Plant Biochemistry & Biotechnology, 2014,23(1):93-103.
[89] Chen L, Ren Y, Zhang Y , et al. Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene, 2012,504(2):160-165.
doi: 10.1016/j.gene.2012.05.034
[1] Wu Hao, Li Yanmin, Xie Chuanxiao. Research Advances on Physiological Basis and Gene#br# Discovery for Thermal Tolerance in Crops [J]. Crops, 2018, 34(5): 1-9.
[2] Ma Jianhui, Zhang Wenli, Gao Xiaolong, Zhang Daijing, . Identification and Expression Analysis of the Whole#br# Glutathione S-Transferase Genome Family in#br# Aegilops tauschii under Abiotic Stress [J]. Crops, 2018, 34(5): 54-62.
[3] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings [J]. Crops, 2018, 34(4): 131-137.
[4] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[5] Chengxun Li,Aiping Li,Xiaoyu Xu,Kaibin Zheng. Discussion on the Mechanism of Stress Resistance of Pigeonpea and Application Prospect in Fujian Province [J]. Crops, 2018, 34(4): 28-31.
[6] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[7] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[8] Kailun Zhang,Shouming Chen,Hong Yin,Bin Li,Liangwen Xie,Fan He. and Antioxidant Activity of Tobacco Seedlings under Salt Stress [J]. Crops, 2018, 34(3): 123-128.
[9] Jiao Zhang,Qi Wu,Yufei Zhou,Yitao Wang,Ruidong Zhang,Ruidong Huang. Effects of Drought and Rewatering at Seedling and Filling Stages on Photosynthetic Characteristics and Dry Matter Production of Sorghum [J]. Crops, 2018, 34(3): 148-154.
[10] Jianguang Liu,Guiyuan Zhao,Junli Zhao,Zhao Geng,Yongqiang Wang,Hanshuang Zhang. Progress in the Structure, Expression and Function of Plant Carboxylesterases [J]. Crops, 2018, 34(3): 32-36.
[11] Jianxia Liu,Xiaodan Zhang,Runmei Wang,Feng Zhou,Wenying Liu,Zhiping Liu. Effects of Seed Soaking with 6-BA on Germination and Physiological Characteristics of Mung Bean under Salt Stress [J]. Crops, 2018, 34(1): 166-172.
[12] Chang Liu,Xuemei Li,Jiayuan Tan,Xiaomin Liang,Xuemei Li. Effects of Water Stress Simulated by PEG on Content of Mineral Elements in Rice Seedlings [J]. Crops, 2017, 33(5): 162-167.
[13] Nannan Lu,Lihua Yan,Chongke Zheng,Haibo Yin,Shanli Guo,Xianzhi Xie. Effects of Salt Stress on Growth and Agronomic Traits of Yanfeng 47 and Yanjing 456 [J]. Crops, 2017, 33(5): 106-111.
[14] Han Yan,Hanglin Song,Li Zhang,Jing Yan,Xianji Shi,Shimiao Zhu,Lu Liu,Hulin Li. Effects of Cadmium Stress on Agronomic Traits and Physiological and Biochemical Indexes of Flue-Cured Tobacco [J]. Crops, 2017, 33(5): 156-161.
[15] Guolong Li,Yaqing Sun,Shiqin Shao,Yongfeng Zhang. Response of Antioxidant System to Drought Stress in Sugar Beet Leaves at Seedling Stage [J]. Crops, 2017, 33(5): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .