Crops ›› 2019, Vol. 35 ›› Issue (5): 22-27.doi: 10.16035/j.issn.1001-7283.2019.05.004

Previous Articles     Next Articles

Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower

Wang Yongxing1,2,Shan Feibiao1,2,Yan Wenzhi1,2,Du Ruixia1,2,Yang Qinfang1,2,Liu Chunhui1,2,Bai Lihua1   

  1. 1 Bayannur Academy of Agricultural and Animal Sciences, Linhe 015000, Inner Mongolia, China
    2 Bayannur Sub-Center for New Plant Variety Tests, Ministry of Agriculture and Rural Affairs, Linhe 015000, Inner Mongolia, China
  • Received:2019-01-29 Revised:2019-07-10 Online:2019-10-15 Published:2019-11-07
  • Contact: Feibiao Shan

Abstract: This experiment with 253 sunflower germplasm resources from all parts of the country carried correlation, regression, genetic diversity analysis which provided reference for the development, utilization and evaluation of sunflower germplasm resources. The quantitative traits were classified by the method of double standard deviation, and the scientific nature of code classification was discussed by frequency analysis, which laid the basis for the revision of sunflower DUS testing guideline. Through correlation and regression analysis, it was found that the leaf size had a very significant correlation with the leaf length and leaf width, and the seed size had very significant correlation with the seed length and seed width, and there had a certain linear functional relationship between them. According to character code classification and frequency analysis, it was found that the classification of bract density, ligulate flower density, leaf length and seed thickness was relatively small, and the data were relatively concentrated, which was not conducive to distinguishing different varieties. Although seed length, seed width and seed size were classified much, they did not conform to the normal distribution, it showed that the code classification was not scientific and reasonable. However, the data distribution of leaves of main stem, leaf width, leaf size, disc diameter and plant height conformed to the normal distribution, code classification is more scientific and useful to distinguish different varieties. The main reason for the unreasonable code classification is the result of manual selection, which is also affected by poor awareness of variety protection and imperfect laws and regulations.

Key words: DUS testing, Sunflower, Genetic diversity, Code classification

Table 1

Quantitative trait description"

性状Trait 平均
Mean
中位数
Middle number
标准差
SD
最小值
Min
最大值
Max
变异系数
CV (%)
主茎叶数Leaves of main stem 32.84 32.10 2.17 22.40 54.10 3.26
舌状花密度(个/盘) Ligulate flower density (number/disk) 32.38 44.22 5.47 22.41 86.74 7.29
苞叶密度(个/盘) Bract density (number/disk) 46.25 63.40 5.34 36.55 94.31 11.55
叶长Leaf length (mm) 313.62 315.70 39.30 197.80 405.00 12.53
叶宽Leaf width (mm) 311.87 312.00 26.81 179.50 457.00 4.90
叶片大小Leaf size (mm2) 994.43 991.41 78.35 362.76 1 679.80 7.88
花盘直径Disc diameter (mm) 225.47 226.65 11.68 98.00 327.20 5.18
株高Plant height (cm) 186.31 177.90 12.71 76.53 332.71 6.82
瘦果长度Seed length (mm) 20.45 22.14 0.96 9.48 26.27 4.69
瘦果宽度Seed width (mm) 8.26 8.56 0.49 3.88 11.08 5.93
瘦果大小Seed size (mm2) 174.64 188.97 11.38 38.61 280.55 6.52
瘦果厚度Seed thickness (mm) 4.19 4.16 0.47 2.51 5.82 11.26

Table 2

Correlation analysis of quantative characters"

性状
Trait
主茎叶数
Leaves of
main stem
舌状花密度
Ligulate flower
ensity
苞叶密度
Bract
density
叶长
Leaf
length
叶宽
Leaf
width
叶片大小
Leaf size
花盘直径
Disc diameter
株高
Plant height
瘦果长度
Seed length
瘦果宽度
Seed width
瘦果大小
Seed size
舌状花密度 0.13*
苞叶密度 0.37** -0.53**
叶长 0.16* -0.03 -0.05
叶宽 0.08 0.05 -0.01 0.84**
叶片大小 0.10 0.05 -0.01 0.86** 0.87**
花盘直径 0.32** 0.18** -0.20** 0.53** 0.50** 0.49**
株高 0.64** 0.18** -0.24** 0.33** 0.31** 0.30** 0.31**
瘦果长度 0.20** -0.05 -0.13* 0.39** 0.29** 0.34** 0.34** 0.37**
瘦果宽度 0.18** 0.04 -0.03 0.45** 0.36** 0.39** 0.51** 0.33** 0.88**
瘦果大小 0.21** 0.01 -0.07 0.42** 0.33** 0.37** 0.45** 0.37** 0.96** 0.96**
瘦果厚度 0.04 0.07 -0.06 0.42** 0.35** 0.38** 0.55** 0.04 0.44** 0.69** 0.57**

Table 3

Abstract of regression analysis model"

性状Trait R R2 调整后R2 Adjusted R2 标准估算的误差Error in standard estimates
叶片大小Leaf size 0.902 0.814 0.812 10.6300
瘦果大小Seed size 0.985 0.970 0.969 9.3975

Table 4

Variance analysis"

性状Trait 模型Model 平方和SS 自由度DF 均方MS F 显著性Significance
叶片大小Leaf size 回归Regression 10 940 983.380 2 5 470 491.690 545.816 0.000
残差Residual 2 505 650.267 250 10 022.601
总计Total 13 446 633.640 252
瘦果大小Seed size 回归Regression 706 634.884 2 353 317.442 4 000.741 0.000
残差Residual 22 078.251 250 88.313
总计Total 728 713.136 252

Table 5

Regression equation coefficient"

性状
Trait
模型
Model
未标准化系数
Unnormalized coefficient
标准误
Standard error
标准化系数
Normalized coefficient
t 显著性
Significance
叶片大小Leaf size 常量Constant -730.372 53.932 -13.542 0.000
叶长X1 Leaf length X1 2.896 0.315 0.464 9.200 0.000
叶宽X2 Leaf width X2 2.621 0.278 0.476 9.444 0.000
瘦果大小Seed size 常量Constant -121.054 3.684 -32.863 0.000
瘦果长度x1 Seed length x1 6.558 0.299 0.517 21.957 0.000
瘦果宽度x2 Seed width x2 19.561 0.926 0.497 21.114 0.000

Table 6

Classification of 12 quantitative traits"

性状Trait 平均Mean 最小值Min 最大值Max 极差Range (Max-Min) 级数1 Step 1 级数2 Step 2 级差Range
主茎叶数
Leaves of main stem
32.84 22.40 54.10 31.70 7.30 7 4.53
舌状花密度(个/盘)
Ligulate flower density (number/disk)
32.38 22.41 86.74 64.33 5.88 5 12.87
苞叶密度(个/盘)
Bract density (number/disk)
46.25 36.55 94.31 57.76 5.41 5 11.55
叶长Leaf length (mm) 313.62 197.80 405.00 207.20 7.67 3 69.07
叶宽Leaf width (mm) 311.87 179.50 457.00 277.50 5.18 5 55.50
叶片大小Leaf size (mm2) 994.43 362.76 1 679.80 1 317.04 8.40 7 188.15
花盘直径Disc diameter (mm) 225.47 98.00 327.20 229.20 9.81 9 25.47
株高Plant height (cm) 186.31 76.53 332.71 256.18 10.08 9 28.46
瘦果长度Seed length (mm) 20.45 9.48 26.27 16.80 8.75 7 2.40
瘦果宽度Seed width (mm) 8.26 3.88 11.08 7.20 7.34 7 1.03
瘦果大小Seed size (mm2) 174.64 38.61 280.55 241.93 10.63 9 26.88
瘦果厚度Seed thickness (mm) 4.90 2.51 5.82 3.31 3.51 3 1.10

Fig.1

Frequency distribution of main quantitative characters of sunflower"

Table 7

Genetic diversity index of 12 quantitative traits"

分级
Classification
主茎叶数
Leaves of main stem
舌状花密度
Ligulate flower density
苞叶密度
Bract density
叶长
Leaf length
叶宽
Leaf width
叶片大小
Leaf size
1 - - - - - -
2 0.18 - - - - 0.09
3 0.33 0.04 0.02 - 0.13 0.20
4 0.32 0.36 0.34 0.29 0.32 0.34
5 0.34 0.34 0.34 0.25 0.34 0.36
6 0.33 0.30 0.32 0.28 0.33 0.33
7 0.14 0.04 0.08 - 0.11 0.23
8 0.09 - - - - 0.08
9 - - - - - -
多样性指数Diversity index 1.74 1.08 1.10 0.81 1.22 1.63
分级
Classification
花盘直径
Disc diameter
株高
Plant height
瘦果长度
Seed length
瘦果宽度
Seed width
瘦果大小
Seed size
瘦果厚度
Seed thickness
1 0.14 0.02 - - 0.29 -
2 0.05 0.04 0.30 0.14 0.08 -
3 0.21 0.20 0.07 0.24 0.04 -
4 0.33 0.35 0.26 0.23 0.30 0.17
5 0.36 0.36 0.34 0.34 0.36 0.16
6 0.33 0.28 0.30 0.33 0.35 0.25
7 0.26 0.27 0.04 0.02 0.22 -
8 0.08 0.16 - 0.02 0.04 -
9 0.02 0.14 - - 0.00 -
多样性指数Diversity index 1.77 1.81 1.31 1.34 1.67 0.58
[1] Aker S, Healy W . The phytogeography of the genus Alstroemeria. Herbertia, 1990,46(2):76-87.
[2] Singh J . Standardization of growing substrates and NPK doses for growth and flowering of alstroemeria (Alstroemeria hybrida L.). Nauni:Dr Yashwant Singh Parmar University of Horticulture and Forestry, 2013.
[3] Healy W E, Wilkins H F . Alstroemeria culture. Herbertia, 1986,42:16-20.
[4] 谭美莲, 严明芳, 汪磊 , 等. 世界特种油料种质资源保存概况. 植物遗传资源学报, 2011,12(3):339-345.
[5] 中华人民共和国农业农村部. 中华人民共和国农业植物品种保护名录(第10批), 2016.
[6] 中华人民共和国农业农村部. 植物新品种特异性、一致性和稳定性测试指南:向日葵. 北京:中国农业出版社, 2013: 4-6.
[7] 刘孟军 . 枣树数量性状的概率分级研究. 园艺学报, 1996(2):105-109.
[8] UPOV. Document TGP/9/1 (draft:7):Examining Distinctness, 2006: 26-32 .
[9] 唐浩 . 植物品种特异性、一致性、稳定性测试总论. 北京: 中国农业出版社, 2017: 83-87.
[10] 冯章丽, 于文泉, 顾广军 , 等. 东北部分地区山荆子种质资源表型多样性及聚类分析. 植物遗传资源学报, 2016,17(6):984-992.
[11] 万述伟, 宋凤景, 郝俊杰 , 等. 271份豌豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2017,18(1):10-18.
[12] 刘玉皎, 宗绪晓 . 青海蚕豆种质资源形态多样性分析. 植物遗传资源学报, 2008,9(1):79-83.
[13] 聂石辉, 彭琳, 王仙 , 等. 鹰嘴豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2015,16(1):64-70.
[14] 李鸿雁 . 扁蓿豆种质资源遗传多样性的研究. 呼和浩特:内蒙古农业大学, 2008.
[15] 贺晨帮, 宗绪晓 . 豌豆种质资源形态标记遗传多样性分析. 植物遗传资源学报, 2011,12(1):42-48.
[16] 赖俊生, 江锡兵, 龚榜初 , 等. 板栗地方品种质量性状多样性分析. 浙江农业科学, 2016,57(8):1196-1200.
[17] 李玉发, 梁军, 窦忠玉 , 等. 食用向日葵杂交种主要性状与产量间的灰色关联分析. 山东农业科学, 2011(12):19-21.
[1] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers [J]. Crops, 2019, 35(5): 15-21.
[2] Lü Wei,Han Junmei,Ren Guoxiang,Wen Fei,Wang Ruopeng,Liu Wenping. Genetic Diversity Analysis of Sesame Germplasm Resources in Shanxi [J]. Crops, 2019, 35(5): 57-63.
[3] Li Jing,Nan Ming. Analysis of Agronomic Characters and Genetic Diversity of 62 Winter Wheat Germplasms from Russia and Ukraine in Northwest China [J]. Crops, 2019, 35(5): 9-14.
[4] Wang Yu,Ma Hui,Xu Xue,Qin Ruiying,Yang Jianbo,Wang Xiufeng. Screening and Application of Functional Insertion-Deletion Markers (InDel) in Rice [J]. Crops, 2019, 35(4): 84-93.
[5] Yu Bai,Xueying Han,Haiyang Dong,Sudu Wuyun,Bingzhen Li,Guilin Chen. Effects of Rotation and Agronomic Measures on Reducing the Damage of Orobanche cumana [J]. Crops, 2019, 35(2): 192-196.
[6] Haiyan Ding,Chunlin Wang,Yan Wu,Guoling Ren,Zuhuan Zhai,Jun Ma. Karyotype Analysis of Chromosome of Sunflower Longkuiza10 [J]. Crops, 2019, 35(2): 99-102.
[7] Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83.
[8] Fang Chen,Shixiao Xu,Xiaohui Li,Chao Liu,Jianfei Zhou,Yuan Wang,Pei Tian,Tiezhao Yang. Construction of Molecular Fingerprinting and Analysis of Genetic Diversity for 80 Tobacco (Nicotiana tabacum) Germplasms Based on SSR Markers [J]. Crops, 2019, 35(1): 22-31.
[9] Rula Sa,Xiaoling Song,Xiaoqing Zhao,Songli Shi,Yingchun Bai,Yanfang Wang,Xirui Zhang. Evaluation of the Content of Flax Lignan and Genetic Diversity [J]. Crops, 2019, 35(1): 56-62.
[10] Shuping Hu,Tiantian Meng,Hui Zhao,Haizhu Bao. Effects of Subsoiling on Photosynthetic Performance and Yield of Sunflower [J]. Crops, 2019, 35(1): 116-120.
[11] Jiao Yuzi,Guo Junmei,Yang Junxing,Li Houen,Xu Tiebing,Ye Yong,Zhou Xiaoyong. Field Study on Variety Difference of Cadmium Accumulation in Sunflower (Helianthus annuus L.) [J]. Crops, 2018, 34(6): 89-95.
[12] Yi Liuxi,Siqin Bateer,Gao Fengyun,Zhou Yu,Jia Xiaoyun,Chen Mingzhe,Zhang Hui,Jia Haibin. Genetic Diversity of Flax Germplasm Resources in Inner Mongolia [J]. Crops, 2018, 34(6): 53-57.
[13] Ma Mengli,Zheng Yun,Zhou Xiaomei,Zhang Tingting,Zhang Xiaoqian,Lu Bingyue. Genetic Diversity Analysis of Red Rice from Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[14] Huiyao Tian,Jizhi Jiang,Chengbin Li,Fen Shen,Ning Hou. Genetic Diversity of Phytophthora infestans in Northeast China [J]. Crops, 2018, 34(3): 168-173.
[15] Rui Li,Jianrong Bai,Xiuhong Wang,Congzhuo Zhang,Xiaomei Zhang,Lei Yan,Ruijuan Yang. Population Genetic Diversity of 144 Sweet Maizes [J]. Crops, 2018, 34(2): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance[J]. Crops, 2019, 35(4): 10 -16 .
[3] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[5] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions[J]. Crops, 2019, 35(5): 109 -113 .
[6] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[7] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[8] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[9] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .
[10] Li Hongtao,Xu Hanyuan,Li Jingfang,Zhu Qing,Chi Ming,Wang Jun. Analysis of Gene Effect on Chlorophyll Content in Maize[J]. Crops, 2019, 35(5): 46 -51 .