Crops ›› 2020, Vol. 36 ›› Issue (2): 112-118.doi: 10.16035/j.issn.1001-7283.2020.02.017

Previous Articles     Next Articles

Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures

Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang()   

  1. Yuxi Zhongyan Tobacco Seed Co.,Ltd, Yuxi 653100, Yunnan, China
  • Received:2019-09-02 Revised:2019-12-05 Online:2020-04-15 Published:2020-04-13
  • Contact: Wenguang Ma E-mail:2570315899@qq.com

Abstract:

The tobacco varieties N. rustica, Maryland 609 and Yunyan 85 pollen were used as experimental materials to study the changes of pollen viability, morphology and related physiological indicator of tobacco varieties under different storage temperatures. Taking the tobacco pollen viability test results of N. rustica as an example, the pollen viability stored for 16 months at -196℃ and -80℃ was 0.64±0.06 and 0.65±0.09 respectively, and there was no significant decrease compared with that before storage (0.66±0.04). The pollen lost its vitality after 5 months storage at 4℃. Electron micrographs of the pollen stored under conditions of -196℃ and -80℃ showed that the pollen morphology was still full, while the pollens stored at 4℃ were shrunken and deformed, the germination grooves were distorted. Solule sugar content (309.276mg/g), soluble protein content (55.216mg/g), total free amino acid content (15.817μmol/mg), free proline content (1.596mg/g), SOD activity (4.284U/g) of pollen stored at -196℃ was significantly higher than that at 4℃. Pollen free proline content (1.626mg/g) and SOD activity (5.546U/g) stored at -80℃ were higher than that of -196℃. The difference maybe due to the freezing speed at different temperature conditions. The results showed that preservation at -196℃ and -80℃ were more favorable for preserving pollen viability of tobacco.

Key words: Tobacco, Pollen storage, Pollen viability, Pollen morphology, Total free amino acids, SOD activity

Table 1

Results of pollen vitality of the tested tobacco varieties under different storage temperature conditions"

检测时间
Time of detection
-196℃ -80℃ 4℃
N. rustica Maryland
609
云烟85
Yunyan 85
N. rustica Maryland
609
云烟85
Yunyan 85
N. rustica Maryland
609
云烟85
Yunyan 85
2017年2月 0.66±0.04a 0.66±0.07a 0.64±0.09a 0.65±0.06a 0.64±0.12a 0.63±0.08a 0.65±0.10a 0.63±0.07a 0.60±0.09a
2017年3月 0.64±0.06a 0.66±0.05a 0.63±0.06a 0.64±0.08a 0.65±0.05a 0.63±0.06a 0.56±0.13b 0.51±0.19b 0.48±0.06b
2017年4月 0.67±0.03a 0.65±0.05a 0.64±0.04a 0.65±0.05a 0.63±0.06a 0.64±0.04a 0.50±0.11b 0.48±0.16b 0.43±0.12b
2017年5月 0.65±0.09a 0.64±0.04a 0.64±0.10a 0.64±0.07a 0.63±0.06a 0.62±0.12a 0.18±0.04c 0.16±0.05c 0.12±0.04c
2017年6月 0.64±0.04a 0.66±0.11a 0.65±0.11a 0.66±0.07a 0.64±0.09a 0.64±0.11a 0.08±0.02d 0.03±0.00d 0.02±0.00d
2017年7月 0.67±0.05a 0.64±0.05a 0.63±0.10a 0.63±0.07a 0.64±0.07a 0.64±0.05a
2017年8月 0.64±0.06a 0.64±0.03a 0.66±0.04a 0.65±0.02a 0.65±0.04a 0.63±0.04a
2017年9月 0.66±0.04a 0.66±0.07a 0.65±0.02a 0.66±0.09a 0.64±0.06a 0.62±0.07a
2017年10月 0.65±0.11a 0.65±0.02a 0.64±0.08a 0.64±0.04a 0.63±0.07a 0.64±0.07a
2017年11月 0.66±0.08a 0.64±0.09a 0.62±0.06a 0.63±0.09a 0.65±0.07a 0.63±0.05a
2017年12月 0.64±0.04a 0.65±0.10a 0.66±0.05a 0.65±0.04a 0.64±0.06a 0.65±0.06a
2018年1月 0.67±0.05a 0.65±0.08a 0.63±0.05a 0.64±0.12a 0.65±0.08a 0.62±0.04a
2018年2月 0.65±0.03a 0.62±0.10a 0.64±0.05a 0.66±0.08a 0.63±0.05a 0.65±0.07a
2018年3月 0.65±0.09a 0.67±0.04a 0.64±0.07a 0.63±0.08a 0.64±0.05a 0.64±0.10a
2018年4月 0.65±0.03a 0.64±0.05a 0.64±0.12a 0.66±0.05a 0.65±0.04a 0.64±0.04a
2018年5月 0.67±0.04a 0.66±0.05a 0.62±0.10a 0.64±0.06a 0.63±0.08a 0.63±0.12a
2018年6月 0.64±0.06a 0.65±0.08a 0.64±0.07a 0.65±0.09a 0.64±0.11a 0.64±0.05a

Fig.1

Electron micrograph of tobacco pollen population under the different storage conditions"

Table 2

Soluble sugar content of tobacco pollen under the different storage temperatures mg/g"

贮藏温度
Storage temperature
N. rustica Maryland 609 云烟85
Yunyan 85
-196℃ 309.276±2.989a 287.652±4.180a 295.849±9.185a
-80℃ 286.808±8.476a 270.906±1.036a 272.807±3.455a
4℃ 158.056±8.484b 136.702±1.647b 128.197±4.926b

Table 3

Total amount of free amino acids in tobacco pollen under the different storage temperatures μmol/mg"

贮藏温度
Storage temperature
N. rustica Maryland 609 云烟85
Yunyan 85
-196℃ 15.817±2.136b 18.008±0.149b 17.121±0.480b
-80℃ 24.152±1.395a 26.194±1.505a 24.173±0.453a
4℃ 12.574±0.132c 12.386±0.245c 13.354±0.964c

Table 4

Proline content of tobacco pollen under the different storage temperatures mg/g"

贮藏温度
Storage temperature
N. rustica Maryland 609 云烟85
Yunyan 85
-196℃ 1.596±0.076a 1.608±0.026a 1.581±0.036a
-80℃ 1.626±0.061a 1.691±0.057a 1.673±0.028a
4℃ 1.328±0.053b 1.365±0.147b 1.352±0.140b

Table 5

Soluble protein content of tobacco pollen under the different storage temperatures mg/g"

贮藏温度
Storage temperature
N. rustica Maryland 609 云烟85
Yunyan 85
-196℃ 55.216±1.615a 55.633±2.847a 54.859±2.595a
-80℃ 53.001±1.605a 51.397±2.282a 51.718±2.228a
4℃ 42.410±2.072b 42.758±1.446b 42.100±2.560b

Table 6

Tobacco pollen SOD activity under the different storage temperatures U/g"

贮藏温度
Storage temperature
N. rustica Maryland 609 云烟85
Yunyan 85
-196℃ 4.284±0.208b 4.984±0.038b 4.344±0.419b
-80℃ 5.546±0.621a 7.154±0.771a 6.729±0.690a
4℃ 2.853±0.493c 2.644±0.079c 2.680±0.474c

Table 7

MDA content of tobacco pollen at the different storage temperatures μmol/g"

贮藏温度
Storage temperature
N. rustica Maryland 609 云烟85
Yunyan 85
-196℃ 2.205±0.092b 2.305±0.132b 2.821±0.612b
-80℃ 2.250±0.168b 2.370±0.552b 2.529±0.215b
4℃ 8.134±0.349a 4.903±0.313a 4.744±0.247a
[1] 耿兴敏, 黄蓓丽, 罗凤霞 , 等. 唐菖蒲花粉低温保存效果分析. 南京林业大学学报(自然科学版), 2011,35(4):7-12.
[2] 古吉, 蔺忠龙, 牛永志 , 等. 烟草花粉贮藏技术及其对烟草种子质量影响的研究. 种子, 2015,34(10):12-16.
[3] 尹佳蕾, 赵惠恩 . 花粉生活力影响因素及花粉贮藏概述. 中国农学通报, 2005(4):110-113,193.
[4] Knowlton H E . Studies in Pollen with Special Reference to Longevity. Cornell University, 1922: 747-749.
[5] Ganeshan S, Alexander M P . Fertilizing ability of cryopreserved grape (Vitis vinifera L.) pollen. Vitis, 1990,29:145-150.
[6] 刘林, 曹春信, 刘新华 . 瓜菜类植物花粉超低温保存研究进展. 中国瓜菜, 2015,28(2):1-4,13.
[7] 胡晋, 郭长根 . 超低温(-196℃)保存杂交水稻恢复系花粉的研究. 作物学报, 1996,22(1):72-77.
[8] 梁立, 徐秉芳, 郑从义 , 等. 紫菜苔花粉超低温保存及其原生质体分离. 植物学报, 1993,35(10):733-738.
[9] 张保才, 李晓丹, 崔鸿文 , 等. 不同贮藏方式对辣椒花粉生活力及授粉效果的影响. 西北农业学报, 2013,22(7):132-137.
[10] 李秉玲, 尚晓倩, 刘燕 . 芍药花粉超低温保存4年后的生活力检测. 北京林业大学学报, 2008,30(6):145-147.
[11] 赵树仁, 武丽英, 姚民昌 , 等. 番茄花粉超低温保存的研究. 园艺学报, 1993,20(1):66-70.
[12] Hanna W W, Towill L E . 5. Long-term pollen storage. Plant Breeding Reviews, 1995,13:179-201.
[13] 谢焰锋, 许林, 戢小梅 , 等. 茶花花粉生活力及贮藏力的研究. 北方园艺, 2013(2):74-77.
[14] 邹琦 . 植物生理学实验指导. 北京:中国农业出版社, 2000,13:179-201.
[15] 陈登文, 王飞, 高爱琴 , 等. 休眠期间低温累积对杏枝芽生理生化的影响. 西北植物学报, 2000(2):212-217.
[16] 耿兴敏, 黄蓓丽, 罗凤霞 , 等. 唐菖蒲花粉低温保存过程中的生理生化特征. 西北植物学报, 2011,31(7):1417-1421.
[17] 李娜, 房伟民, 陈发棣 , 等. 切花寒菊小花对低温胁迫的生理响应及其抗寒性分析. 西北植物学报, 2010,30(4):741-746.
[18] 张迎辉, 李书平, 荣俊冬 , 等. 低温胁迫下福建山樱花、日本樱花内源激素的变化. 福建林业科技, 2013,40(3):62-67.
[19] 陈和明, 尹光天 . 黄藤花粉萌发与低温贮藏研究. 西北植物学报, 2006(7):1395-1400.
[20] Omura M, Akihama T, Rome . Pollen preservation of fruit trees for genebanks in Japan. Plant Genetic Resources Newsletter, 1980,43:28-31.
[21] Sparks D, Yates I E . Pecan pollen stored over a decade retains viability. HortScience, 2002,37(1):176-177.
[22] 赵婵璞, 张泉卫, 史宝胜 , 等. 有斑百合花粉低温贮藏研究. 河北农业大学学报, 2014,37(1):54-58.
[23] Rajasekharan P E, Ganeshan S, Thamizharasu V . Expression of trifoliate leaf character in Citrus limonia×Poncirus trifoliata hybrids through cryostored pollen. Journal of Hortcultural Science, 1995,70(3):485-490.
[24] 袁涛, 王莲英 . 根据花粉形态探讨中国栽培牡丹的起源. 北京林业大学学报, 2002,24(1):5-11.
[25] 袁涛, 王莲英 . 几个牡丹野生种的花粉形态及其演化、分类的探讨. 北京林业大学学报, 1999,21(1):17-21.
[26] 陈智忠 . 牡丹花粉形态研究初报. 林业科技通讯, 1999(5):33-34.
[27] 赵树任, 武丽英, 姚民昌 , 等. 番茄花粉超低温保存研究. 园艺学报, 1993,20(1):66-70.
[28] 江福英, 李延, 翁伯琦 . 植物低温胁迫及其抗性生理. 福建农业学报, 2002(3):190-195.
[29] 王孝宣, 李树德, 东惠茹 , 等. 番茄品种耐寒性与ABA和可溶性糖含量的关系. 园艺学报, 1998(1):57-61.
[30] 简令成 . 生物膜与植物寒害和抗寒性的关系. 植物学通报, 1983(1):19-25.
[31] 汤章诚 . 逆境条件下植物脯氨酸的累积及可能的意义. 植物生理学通讯, 1984(1):15-21.
[32] 南旭阳, 戴灵鹏 . 铜胁迫对铜锈环棱螺致死率、富集性、CAT和SOD的影响. 生态与农村环境学报, 2011,27(5):67-71.
[33] 冷春龙, 俞元春, 吴电明 , 等. 转基因抗虫棉对赤子爱胜蚓生长、生殖及SOD活性的影响. 中国生态农业学报, 2012,20(7):927-931.
[34] 刘燕, 张亚利 . 梅花花粉超低温保存研究. 北京林业大学学报, 2004,26(S1):22-25.
[1] Shen Hongtao,Zhang Fusheng,Li Dong,Qiu Jianhua,Cai Xinghong,Qin Yubao. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[2] Chen Yue,Li Hulin,Zhu Shimiao,Yan Han,Lang Bin,Ji Wenxiu. Isolation and Identification of IAA - Producing Rhizobacteria and Its Effects on Seed Germination and Seedling Growth of Tobacco [J]. Crops, 2020, 36(2): 176-181.
[3] Li Diqin,Lu Zhengyan,Wang Yan,Zhong Yi,Liu Minghui,Wang Qing,Jiang Xiangwei,Lu Chao,Ding Chunxia. Effects of Flower Juice Extracts of Gardenia and Magnolia on Chemical Components and Fragrance Substances Content of Flue-Cured Tobacco [J]. Crops, 2020, 36(1): 136-140.
[4] Liu Meiju,Li Jiangzhou,Ji Sigui,Fan Miaomiao,Gu Xinghui,Zhang Limeng,Zhang Jinwei,Qu Xing,Zhou Wenbing,Lin Shan. Evaluation of Effect of Biochar on Tobacco Yield and Nitrogen Use Efficiency in Mountain Slope Areas [J]. Crops, 2020, 36(1): 89-97.
[5] Shuai Jingtong,Pei Xiaodong,Li Juan,Zhang Yiyang. Effects of Furrowing and Ridging Measures on the Quality of Tobacco-Planting Soils and Output Value of Flue-Cured Tobacco [J]. Crops, 2019, 35(6): 114-119.
[6] Xu Jie,Pan Lei,Yang Shuai,Chen Lianhong,Geng Shibing,Ma Wenguang. Research Progress of Tobacco Pollen Vitality [J]. Crops, 2019, 35(3): 10-14.
[7] Jiang Nan,Gong Zhanwu,Chen Lili,Hu Yajie,Wei Jianyu,Wang Shengcai,Li Diqin. Grey Correlation Analysis Between Soil Nutrients and Three Microorganisms after Application of Bacillus subtilis [J]. Crops, 2019, 35(3): 142-149.
[8] Xinqi Geng,Huijuan Yang,Yanqing Qin,Xingyou Yang,Shimin Zhao,Hongzhi Shi. Development and Application of Tobacco SSR Markers Based on Genome Re-Sequencing of Different Tobacco Types [J]. Crops, 2019, 35(2): 84-89.
[9] Deming Xiang,Mingfa Zhang,Shuguang Peng,Feng Tian,Jianxin Luo,Wu Chen,Yunfan Cai,Minghui Tian,Qisong Lü. Effects of Consecutive Applying Different New Type Fertilizers on Soil Fungal Communities and Tobacco Quality and Yield [J]. Crops, 2019, 35(2): 156-163.
[10] Xinling Yang,Qian Yao,Wenli Ping,Yiqiong Ma,Baolin Wang,Guotao Jia,Yongfeng Yang,Hong Cui. Screening of High Aroma Mutants from Progenies of EMS Mutagenized Flue-Cured Tobacco [J]. Crops, 2019, 35(1): 68-74.
[11] Fang Chen,Shixiao Xu,Xiaohui Li,Chao Liu,Jianfei Zhou,Yuan Wang,Pei Tian,Tiezhao Yang. Construction of Molecular Fingerprinting and Analysis of Genetic Diversity for 80 Tobacco (Nicotiana tabacum) Germplasms Based on SSR Markers [J]. Crops, 2019, 35(1): 22-31.
[12] Wang Ning,Zhang Jing,Huang Jinyong,Shi Tuansheng,Du Jian,Yue Caipeng. Effects of Exogenous Hydrogen Peroxide on Floral Bud Differentiation in Tobacco [J]. Crops, 2018, 34(6): 116-123.
[13] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures [J]. Crops, 2018, 34(4): 161-166.
[14] Kailun Zhang,Shouming Chen,Hong Yin,Bin Li,Liangwen Xie,Fan He. and Antioxidant Activity of Tobacco Seedlings under Salt Stress [J]. Crops, 2018, 34(3): 123-128.
[15] Yaning Wang,Jinpeng Yang,Chunlei Yang,Fangsen Xu,Xiang Zhang,Liang Li. Effects of Well-Cellar Transplanting with Triangulation on Growth, Development,Yield and Quality of Burley Tobacco [J]. Crops, 2018, 34(3): 116-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[7] . [J]. Crops, 2020, 36(2): 200 -204 .
[8] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[9] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .
[10] Tan Youbin. Suggestion and Discussion of Maize Breeding in West Africa Assistance Agricultural Project[J]. Crops, 2020, 36(1): 9 -12 .