Crops ›› 2022, Vol. 38 ›› Issue (3): 211-217.doi: 10.16035/j.issn.1001-7283.2022.03.031

Previous Articles     Next Articles

Effects of Different Rotation Tillage Methods and Biochar on Soil Enzyme Activity, Soil Nutrients and Yield of Wheat and Maize

Guo Shuya(), Shang Shang, Tang Qining, Zhang Yan, Lu Guangyuan()   

  1. Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan, China
  • Received:2022-01-14 Revised:2022-03-30 Online:2022-06-15 Published:2022-06-20
  • Contact: Lu Guangyuan E-mail:shuyaguo@163.com;lugy378@163.com

Abstract:

The effects of different rotation tillage methods and biochar on soil enzyme activity, nutrient and yield in the Eastern Henan Plain were studied, aiming to select suitable tillage and fertilization system. Field experiments of three years were carried out with wheat rotary tillage and maize no tillage+no biochar (RB0) as the control, the three kinds of biochar dosage (B1: 2.5t/ha, B2: 5.0t/ha, B3: 7.5t/ha) and two rotation tillage methods (R: wheat rotary tillage and maize no tillage, D: wheat deep plowing and maize no tillage) were set. The results revealed that different treatments could considerably improve the level of soil organic carbon, accessible nutrients and soil enzyme activity in the 0-20cm soil layer compared to RB0 treatment. Biochar application improved the levels of soil organic carbon, accessible nutrients, and soil enzyme activity under varied rotation tillage, with RB3 and DB3 having the best treatment effect. In 20-40cm soil layer, the treatment of wheat deep plowing and maize no tillage significantly increased the content of soil organic carbon, available nutrients and soil enzyme activity, and DB3 treatment had the best effect. Compared with 2020, except soil alkaline phosphatase, different treatments in 2021 increased soil organic carbon, available nutrient content, urease and invertase activities to varying degrees. Different treatments could significantly increase wheat and maize yields, with the increase rates of 6.02%-17.52% and 5.07%-11.02% in 2020, and 7.01%-20.87% and 6.53%-18.13% in 2021. DB3 treatment had the highest yield, significantly higher than other treatments.

Key words: Rotation tillage, Biochar, Soil enzyme activity, Soil nutrients, Yield

Table 1

Effects of different treatments on soil organic carbon content g/kg"

处理
Treatment
2020 2021
0~20cm 20~40cm 0~20cm 20~40cm
RB0 9.60d 5.07d 9.55c 5.11d
RB1 10.28c 5.78c 10.86b 5.71c
RB2 10.37c 5.62c 11.67a 5.60c
RB3 11.09b 5.63c 12.04a 5.89c
DB1 10.29c 5.66c 10.86b 5.93c
DB2 10.48c 6.18b 11.73a 6.74b
DB3 11.65a 6.70a 11.94a 7.28a
方差分析Analysis of variance
轮耕方式
Rotation tillage
* ** ns **
生物炭Biochar ** ** ** **
轮耕方式×生物炭
Rotation tillage×biochar
* ** ns **

Fig.1

Effects of different treatments on soil available nutrient contents Different lowercase letters indicate significant difference at 0.05 level, the same below"

Fig.2

Effects of different treatments on soil enzyme activities"

Table 2

Effects of different treatments on wheat and maize yield kg/hm2"

处理
Treatment
2020 2021
小麦
Wheat
玉米
Maize
小麦
Wheat
玉米
Maize
RB0 6924.51d 8258.74d 6974.16e 8298.37e
RB1 7341.63c 8476.23c 7463.82d 8627.26d
RB2 7528.38c 8578.51bc 7714.93cd 8846.39cd
RB3 7819.62b 8913.67a 7973.28bc 9157.72bc
DB1 7538.28c 8512.41c 7782.35cd 8869.47cd
DB2 7892.49ab 8879.34ab 8172.41ab 9238.16b
DB3 8137.72a 8946.83a 8429.56a 9566.54a
方差分析Analysis of variance
耕作方式
Rotation tillage
** * ** **
生物炭Biochar ** ** ** **
轮耕方式×生物炭
Rotation tillage×biochar
ns ns ns ns

Table 3

Correlation analysis of indicators in different treatments"

项目
Item
有机碳
Organic
carbon
碱解氮
Alkali hydrolyzed
nitrogen
速效磷
Available
phosphorus
速效钾
Available
potassium
脲酶
Urease
蔗糖酶
Sucrase
碱性磷酸酶
Alkaline
phosphatase
小麦产量
Wheat
yield
玉米产量
Maize
yield
有机碳Organic carbon 1
碱解氮Alkali hydrolyzed nitrogen 0.90** 1
速效磷Available phosphorus 0.94** 0.98** 1
速效钾Available potassium 0.93** 0.98** 1.00** 1
脲酶Urease 0.94** 0.93** 0.98** 0.98** 1
蔗糖酶Sucrase 0.90** 0.98** 0.99** 0.99** 0.97** 1
碱性磷酸酶Alkaline phosphatase 0.93** 0.97** 0.99** 0.99** 0.98** 0.99** 1
小麦产量Wheat yield 0.92** 0.82* 0.81* 0.81* 0.79* 0.75* 0.79* 1
玉米产量Maize yield 0.92** 0.79* 0.81* 0.81* 0.81* 0.75* 0.79* 0.99** 1
[1] 韩上, 卢昌艾, 武际, 等. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质. 植物营养与肥料学报, 2020, 26(2):276-284.
[2] 张海林, 高旺盛, 陈阜, 等. 保护性耕作研究现状、发展趋势及对策. 中国农业大学学报, 2005, 10(1):16-20.
[3] 陈学文, 张晓平, 梁爱珍, 等. 耕作方式对黑土硬度和容重的影响. 应用生态学报, 2012, 23(2):439-444.
[4] 王慎强, 李欣, 徐富安, 等. 长期施用化肥与有机肥对潮土土壤物理性质的影响. 中国生态农业学报, 2001, 9(2):77-78.
[5] 王改兰, 段建南. 长期施肥对黄土丘陵区土壤理化性质的影响. 水土保持学报, 2006, 20(4):82-89.
[6] Pandey D, Agrawal M, Bohra J S. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation. Soil and Tillage Research, 2014, 136:51-60.
doi: 10.1016/j.still.2013.09.013
[7] 刘水. 不同耕作方式对农田夏玉米土壤微生物的影响. 安徽农业科学, 2018, 46(34):91-93,110.
[8] 刘红杰, 习向银, 刘朝科, 等. 深翻耕和连作对植烟土壤养分及其生物活性的影响. 福建农业学报, 2011, 26(2):298-303.
[9] 刘淑梅, 孙武, 张瑜, 等. 小麦季不同耕作方式对砂姜黑土玉米农田土壤微生物特性及酶活性的影响. 玉米科学, 2018, 26(1):103-107.
[10] 龙潜, 董士刚, 朱长伟, 等. 不同耕作模式对小麦-玉米轮作下潮土养分和作物产量的影响. 水土保持学报, 2019, 33(4):9.
[11] 朱长伟, 龙潜, 董士刚, 等. 小麦-玉米季不同旋耕和深耕管理对潮土微生物量碳氮与酶活性的影响. 植物营养与肥料学报, 2020, 26(1):51-63.
[12] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16):3324-3333.
[13] 刘小宁, 蔡立群, 黄益宗, 等. 生物质炭对旱作农田土壤持水特性的影响. 水土保持学报, 2017(4):112-117.
[14] 王典, 张祥, 姜存仓, 等. 生物质炭改良土壤及对作物效应的研究进展. 中国生态农业学报, 2012, 20(8):963-967.
[15] 孟繁昊, 高聚林, 于晓芳, 等. 生物炭配施氮肥改善表层土壤生物化学性状研究. 植物营养与肥料学报, 2018, 24(5):1214-1226.
[16] 王智慧, 殷大伟, 王洪义, 等. 生物炭对土壤养分、酶活性及玉米产量的影响. 东北农业科学, 2019, 44(3):14-19.
[17] 邹春娇, 张勇勇, 张一鸣, 等. 生物炭对设施连作黄瓜根域基质酶活性和微生物的调节. 应用生态学报, 2015, 26(6):1772-1778.
[18] 顾美英, 徐万里, 唐光木, 等. 生物炭对灰漠土和风沙土土壤微生物多样性及与氮素相关微生物功能的影响. 新疆农业科学, 2014, 51(5):926-934.
[19] Vaccaria F P, Baronti S, Lugato E. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 2011, 34(4):231-238.
doi: 10.1016/j.eja.2011.01.006
[20] 关松荫. 土壤酶学研究方法. 北京: 农业出版社, 1986.
[21] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[22] 王玉玲, 李军, 柏炜霞. 轮耕体系对黄土台塬麦玉轮作土壤生产性能的影响. 农业工程学报, 2015, 31(1):107-116.
[23] 陈山, 龙世平, 崔新卫, 等. 施用稻壳生物炭对土壤养分及烤烟生长的影响. 作物研究, 2016, 30(2):141-147.
[24] 高利华, 屈忠义. 膜下滴灌条件下生物质炭对土壤水热肥效应的影响. 土壤, 2017, 49 (3):614-620.
[25] 石晓宇, 张婷, 贾浩, 等. 生物炭对设施土壤化学性质及黄瓜产量品质的影响. 农学学报, 2019, 9(4):59-65.
[26] 冀保毅. 深耕与秸秆还田的土壤改良效果及其作物增产效应研究. 郑州:河南农业大学, 2013.
[27] 龙潜. 不同轮耕模式对潮土不同土层理化性状及作物产量的影响. 郑州:河南农业大学, 2019.
[28] 尚杰, 耿增超, 王月玲, 等. 施用生物炭对塿土微生物量碳、氮及酶活性的影响. 中国农业科学, 2016, 49(6):1142-1151.
[29] 张黛静, 胡晓, 马建辉, 等. 耕作和培肥对豫中区小麦-玉米轮作系统土壤氮平衡和温室气体排放的影响. 应用生态学报, 2021, 32(5):1753-1760.
[30] 李娟, 葛磊, 曹婷婷, 等. 有机肥施用量和耕作方式对旱地土壤水分利用效率及作物生产力的影响. 水土保持学报, 2019, 33(2):121-127.
赵亚丽, 郭海斌, 薛志伟, 等. 耕作方式与秸秆还田对冬小麦-夏玉米轮作系统中干物质生产和水分利用效率的影响. 作物学报, 2014, 40(10):1797-1807.
[31] 姜英, 王峥宇, 廉宏利, 等. 深翻,有机无机肥配施对稻田水分渗漏和氮素淋溶的影响. 中国农业科学, 2021, 54(20):4385-4395.
[32] 孙悦, 李从锋, 齐华. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响. 中国农业科学, 2020, 53(15):3071-3082.
[1] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[2] Feng Changhui, Jiao Chunhai, Zhang Youchang, Bie Shu, Qin Hongde, Wang Qiongshan, Zhang Jiaohai, Wang Xiaogang, Xia Songbo, Lan Jiayang, Chen Quanqiu. Genetic Analysis for Yield and Fiber Quality Traits in Upland Cotton Based on Partial NCII Mating Design [J]. Crops, 2022, 38(5): 13-21.
[3] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[4] Zhang Xi, Xie Jin, Huang Hao, Gao Renji, Lu Chao, Zhou Yilin, Liang Zengfa, Wang Wei. Effects of Nitrogen Fertilizer Operation and Plant Spacing on Yield and Quality of Yunyan 116 in Pu’er Tobacco Area [J]. Crops, 2022, 38(5): 188-194.
[5] Shi Bixian, Tao Jianfei, Gao Yan, Xie Huihong, Abulimiti·Aierken , Cheng Pingshan, Maitituersun·Sadike , Sha Hong. Effects of Different Planting Densities on the Morphological Traits and Yields of Three Confectionery Sunflower Varieties [J]. Crops, 2022, 38(5): 195-200.
[6] Xu Min, Jin Lulu, Li Ruichun, Sun Liyuan, Wang Zisheng. Study on Cotton Chemical Topping in Liaohe Cotton Area [J]. Crops, 2022, 38(5): 201-207.
[7] Tao Yueyue, Sun Hua, Wang Haihou, Lu Changying, Shen Mingxing. Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed [J]. Crops, 2022, 38(5): 215-220.
[8] Zhang Chonghua, Duan Licheng, Wang Shangming, Zhang Qingxia, Wang Chengzi, Wu Fengyu, Yang Lin. Effects of Sowing Date on Late-Rice Yield and Utilization of Heat-Light Resources in Jiangxi Province [J]. Crops, 2022, 38(5): 229-234.
[9] Pan Junfeng, Liu Yanzhuo, Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua, Li Meijuan, Hu Rui. Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China [J]. Crops, 2022, 38(5): 241-248.
[10] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[11] Dong Linlin, Shen Mingxing, Shi Linlin, Shen Yuan, Wang Haihou, Lu Changying. The Effects of Biochar Combined with Earthworm Cast Application on Rice Yield and Nutrient Uptake [J]. Crops, 2022, 38(5): 69-77.
[12] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[13] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[14] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[15] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!