Crops ›› 2022, Vol. 38 ›› Issue (5): 69-77.doi: 10.16035/j.issn.1001-7283.2022.05.010

Previous Articles     Next Articles

The Effects of Biochar Combined with Earthworm Cast Application on Rice Yield and Nutrient Uptake

Dong Linlin1(), Shen Mingxing2, Shi Linlin1, Shen Yuan1, Wang Haihou1, Lu Changying1()   

  1. 1National Agricultural Experimental Station for Soil Quality, Xiangcheng/Suzhou Academy of Agricultural Sciences, Suzhou 215105, Jiangsu, China
    2Suzhou Country Cadre Institute, Suzhou 215000, Jiangsu, China
  • Received:2021-07-14 Revised:2021-09-23 Online:2022-10-15 Published:2022-10-19

Abstract:

The application of biochar combined with earthworm cast (BEC) can increase soil organic carbon and nitrogen input, which has a positive impact on crop yield and nutrient absorption and utilization. The aim of this work was to study the effects of BEC application on rice yield and nutrient absorption. In 2018 and 2019, three biochar gradients (B0: 0.0g/kg, B1: 6.0g/kg, B2: 30.0g/kg) and three earthworm cast gradients (M0: no earthworm cast, M1: 1% earthworm cast, M2: 5% earthworm cast) were evaluated in a pot experiment. The results showed that the biomass of different parts of rice in 2019 was higher than that in 2018, and the absorption of nitrogen and phosphorus in rice grains increased. However, the absorption of potassium decreased in the treatment of B2 and M2. In 2018 and 2019, there was a significant correlation between rice grain biomass and carbon input by biochar and earthworm cast (P<0.01). The amount of carbon and nitrogen input from BEC was positively correlated with nitrogen harvest index, not significantly negatively correlated with phosphorus harvest index in 2018, and significantly negatively correlated with potassium harvest index in 2019 (P<0.05). The absorption and utilization of the three nutrient elements varied greatly from the application amount of BEC. Overall, the application of biochar combined with earthworm cast promoted the growth of rice and improve the utilization rate of chemical elements. It is considered as an effective measure to fertilize medium and low yield fields, improve crop yield and nutrient utilization.

Key words: Rice, Biochar, Earthworm cast, Nutrient absorption, Element harvest index

Table 1

Content of nutrient element in biochar and wormcast applied in the pot test"

供试材料
Material
元素含量Element content (g/kg) 含水量
Water content (%)
pH
碳Carbon 氮Nitrogen 磷Phosphorus 钾Potassium
生物质炭Biochar 545.83 5.97 0.54 6.85 15.29 9.20
蚯蚓粪Wormcast (2018) 228.38 6.71 3.46 6.59 89.94 7.41
蚯蚓粪Wormcast (2019) 192.25 6.55 6.61 3.87 77.73 7.28

Table 2

"

处理
Treatment
根Root 茎Stem 叶Leaf 籽粒Grain
2018 2019 2018 2019 2018 2019 2018 2019
B0M0 17.16±0.78 23.63±0.89 44.90±7.09 85.54±5.30 15.00±2.10 25.23±1.31 56.16±6.10 73.57±6.25
B1M0 19.53±1.33 22.64±1.52 43.59±0.67 83.47±2.62 14.82±0.11 24.83±1.12 54.42±1.90 71.07±2.65
B2M0 21.31±0.71 23.58±0.80 51.61±2.94 87.79±1.68 15.4±1.17 25.73±0.84 63.62±1.68 74.17±1.57
B1M1 23.38±2.37 24.53±1.26 50.90±2.06 97.25±0.80 14.28±1.33 27.40±0.46 53.49±3.48 79.35±3.0
B1M2 30.64±1.17 26.06±1.12 66.24±4.62 118.67±4.61 20.88±1.10 36.84±0.64 81.08±2.32 123.72±6.75
B2M1 20.20±1.46 28.40±4.48 60.42±0.36 102.13±12.22 16.12±0.06 31.26±5.0 72.17±1.33 75.91±5.20
B2M2 31.44±4.63 28.67±0.95 67.7±5.36 99.24±9.26 20.70±1.44 30.58±1.04 91.12±1.03 109.43±9.74
检测变量Source of variation
生物质炭Biochar ns ns ns ns ns ns ns ns
蚯蚓粪Wormcast ** ** ns * * ** * *
生物质炭×蚯蚓粪
Biochar×warmcast
** ns ** * ** * *** ***

Table 3

Effects of different biochar and earthworm cast application on rice growth indexes among different treatments"

处理
Treatment
株数(株/穴)Plants (plant/hole) 穗粒数Grains per panicle 结实率Seed-setting rate (%) 千粒重1000-grain weight (g)
2018 2019 2018 2019 2018 2019 2018 2019
B0M0 12.00±1.39 16.89±0.78 64.07±3.14 53.95±1.19 89.02±1.23 89.55±1.95 27.32±0.31 30.64±0.62
B1M0 10.78±0.78 15.89±0.40 49.08±2.76 55.81±2.14 91.36±1.11 90.71±1.19 27.42±0.34 31.45±0.37
B2M0 12.67±1.26 18.33±0.19 42.40±2.66 56.98±1.25 91.98±0.57 89.72±0.93 27.58±0.55 32.73±1.25
B1M1 11.55±0.40 18.22±0.22 46.03±2.92 55.58±0.96 93.10±0.60 93.03±1.65 27.44±0.16 32.12±0.89
B1M2 15.00±0.58 18.78±0.87 63.41±2.72 75.77±3.24 90.72±1.08 90.64±2.68 27.85±0.71 30.37±0.19
B2M1 12.44±0.29 17.67±1.20 46.85±0.88 59.03±2.57 91.47±1.06 90.77±0.78 27.74±0.53 30.45±0.03
B2M2 14.78±0.78 18.67±1.89 72.74±8.85 73.14±5.47 91.65±1.78 90.76±2.06 28.07±0.18 30.92±0.16
检测变量Source of variation
生物质炭Biochar ns ns ns ns ns ns ns *
蚯蚓粪Wormcast *** ns ** *** ns ns ns ns
生物质炭×蚯蚓粪
Biochar×warmcast
* ns ** *** ns ns ns ns

Table 4

"

处理
Treatment
氮Nitrogen 磷Phosphorus 钾Potassium
2018 2019 2018 2019 2018 2019
B0M0 463.33±32.83 1303.33±76.88 10.00±0.00 123.33±1.51 130.00±20.82 150.00±15.28
B1M0 783.33±87.43 1270.00±65.57 6.67±3.33 153.33±8.82 130.00±5.77 130.00±10.00
B2M0 873.33±81.10 1240.00±26.46 10.00±0.00 136.67±14.53 156.67±6.67 136.67±3.33
B1M1 770.00±111.36 1276.67±43.72 13.33±3.33 136.67±3.33 130.00±5.77 133.33±3.33
B1M2 1323.33±115.66 2203.33±38.36 40.00±0.00 303.33±3.33 203.33±6.67 200.00±17.32
B2M1 1083.33±44.10 1453.33±59.25 10.00±0.00 156.67±20.28 170.00±5.77 146.67±6.67
B2M2 1640.00±87.18 2246.67±201.85 30.00±5.77 200.00±23.33 213.33±12.02 180.00±30.00
检测变量Source of variation
生物炭Biochar *** ns ** ns ns ns
蚯蚓粪Wormcast *** *** ** *** *** **
生物炭×蚯蚓粪
Biochar×wormcast
*** *** *** *** *** ***

Fig.1

Nitrogen (a), phosphorus (b) and potassium (c) harvest indicators under different treatments with different dosages of biochar and earthworm cast application Different lowercase letters indicate significant difference between treatments at the level of P < 0.05"

Fig.2

Effects of carbon and nitrogen input on rice grain weight Y1, X1 and Y2, X2 represent the stimulated value of 2018 and 2019, respectively; Y means stimulated value of accumulation weight of grain, X means stimulated value of carbon (nitrogen) accumulation input"

Fig.3

Relationship among nutrient elements added by biochar and earthworm cast and their harvest index a, b and c are the fitting between carbon input and nitrogen, phosphorus and potassium, respectively; d, e and f are the fitting between nitrogen input and nitrogen, phosphorus and potassium, respectively"

[1] 张淑香, 张文菊, 沈仁芳, 等. 我国典型农田长期施肥土壤肥力变化与研究展望. 植物营养与肥料学报, 2015, 21(6):1389-1393.
[2] 陈健成, 王会, 马荣辉, 等. 有机无机物料改良盐渍土研究进展. 土壤通报, 2020, 51(5):1255-1260.
[3] 曾稀柏, 张佳宝, 魏朝富, 等. 中国低产田状况及改良策略. 土壤学报, 2014, 51(4):675-682.
[4] 王飞, 李清华, 林诚, 等. 南方低产田黄泥田与高产灰泥田基础地力的差异. 植物营养与肥料学报, 2019, 25(5):773-781.
[5] Gaskin J W, Steine R C, Har R, et al. Effects of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 2008, 51(6):2061-2069.
[6] El-Naggar A, Sang S L, Rinklebe J, et al. Biochar application to low fertility soils:a review of current status,and future prospects. Geoderma, 2019, 337:536-554.
doi: 10.1016/j.geoderma.2018.09.034
[7] Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma, 2010, 158(3):443-449.
doi: 10.1016/j.geoderma.2010.05.013
[8] Agegnehu G, Bass A M, Nelson P N, et al. Biochar and biochar-compost as soil amendments:effects on peanut yield,soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture,Ecosystems and Environment, 2015, 213:72-85.
doi: 10.1016/j.agee.2015.07.027
[9] 史思伟, 娄翼来, 杜章留, 等. 生物炭的10年土壤培肥效应. 中国土壤与肥料, 2018(6):16-22.
[10] Zhang Q Q, Song Y F, Wu Z, et al. Effects of six-year biochar amendment on soil aggregation,crop growth,and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. Journal of Cleaner Production, 2020, 242:118435.
doi: 10.1016/j.jclepro.2019.118435
[11] 李倩倩, 许晨阳, 耿增超, 等. 生物炭对塿土土壤容重和团聚体的影响. 环境科学, 2019, 40(7):3388-3396.
[12] 米会珍, 朱利霞, 沈玉芳, 等. 生物炭对旱作农田土壤有机碳及氮素在团聚体中分布的影响. 农业环境科学学报, 2015, 34(8):1550-1556.
[13] 李少朋, 陈昢圳, 周艺艺, 等. 生物炭施用对滨海盐碱土速效养分和酶活性的影响. 南方农业学报, 2019, 50(7):1460-1465.
[14] 高鸣慧, 李娜, 彭靖, 等. 秸秆和生物炭还田对棕壤团聚体分布及有机碳含量的影响. 植物营养与肥料学报, 2020, 26(11):1978-1986.
[15] 崔月峰, 孙国才, 郭奥楠, 等. 秸秆和生物炭还田对冷凉稻区土壤物理性质及pH值的影响. 江苏农业科学, 2020, 48(21):255-260.
[16] Xu W H, Whitman W B, Gundale M J, et al. Functional response of the soil microbial community to biochar applications. GCB-Bioenergy, 2021, 13:269-281.
doi: 10.1111/gcbb.12773
[17] 郑琴, 王秀斌, 宋大利, 等. 生物炭对潮土磷有效性、小麦产量及吸磷量的影响. 中国土壤与肥料, 2019(3):130-136.
[18] 董成, 陈智勇, 谢迎新, 等. 生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响. 中国农业科学, 2020, 3(19):4024-4034.
[19] Fouladidorhani M, Shayannejad M, Shariatmadari H, et al. Biochar,Manure,and super absorbent increased wheat yields and salt redistribution in a saline-sodic soil. Agronomy Journal, 2020, 112(6):5193-5205.
doi: 10.1002/agj2.20365
[20] 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响. 应用生态学报, 2019, 30(4):1110-1118.
doi: 10.13287/j.1001-9332.201904.002
[21] Dong L L, Wang J D, Shen M X, et al. Biochar combined with nitrogen fertilizer affects soil properties and wheat yield in medium-low-yield farmland. Soil Use and Management, 2021, 38(1):584-595.
doi: 10.1111/sum.12712
[22] 王明友, 井大炜, 张红, 等. 蚯蚓粪对豇豆土壤活性有机碳及微生物活性的影响. 核农学报, 2017, 30(7):1404-1410.
[23] 刘丽媛, 徐艳, 朱书豪, 等. 有机肥配施对中国农田土壤容重影响的整合分析. 农业资源与环境学报, 2021, 38(5):867-873.
[24] 李彦霈, 邵明安, 王娇. 蚯蚓粪覆盖对土壤水分蒸发过程的影响. 土壤学报, 2018, 55(3):634-641.
[25] 吴军虎, 邵凡凡, 刘侠. 蚯蚓粪对土壤团聚体组成和入渗过程水分运移的影响. 水土保持学报, 2019, 33(3):81-87.
[26] 孙喜军, 吕爽, 高莹, 等. 蚯蚓粪对作物连作障碍抑制作用研究进展. 土壤, 2020, 52(4):676-684.
[27] 安宁, 李冬, 李娜, 等. 长期不同量秸秆炭化还田下水稻土孔隙结构特征. 植物营养与肥料学报, 2020, 27(12):1-9.
[28] 覃杨华, 何明菊, 张远飞, 等. 蚯蚓粪有机肥对土壤肥力与农作物生长及产品品质的影响. 农业与技术, 2020, 40(17):31-32.
[29] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
[30] 徐钰, 杨岩, 江丽华, 等. 土壤改良措施对盐碱地大豆产量和品质的影响. 山东农业科学, 2020, 52(11):86-89.
[31] 胡茜, 赵远, 张玉虎, 等. 生物炭配施化肥对稻田土壤有效氮素以及水稻产量的影响. 江苏农业科学, 2019, 47(15):108-112.
[32] Huang X L, Jiang H, Li Y, et al. The role of poorly crystalline iron oxides in the stability of soil aggregate-associated organic carbon in a rice-wheat cropping system. Geoderma, 2016, 279:1-10.
doi: 10.1016/j.geoderma.2016.05.011
[33] 曹湛波, 王磊, 李凡, 等. 土壤呼吸与土壤有机碳对不同秸秆还田的响应及其机制. 环境科学, 2016, 37(5):1908-1904.
[34] 黄雁飞, 陈桂芬, 熊柳梅, 等. 不同秸秆生物炭对水稻生长及土壤养分的影响. 南方农业学报, 2020, 51(9):2113-2119.
[35] Cheng C H, Lin T P, Lehmann J, et al. Sorption properties for black carbon (wood char) after long term exposure in soils. Organic Geochemistry, 2014, 70:53-61.
doi: 10.1016/j.orggeochem.2014.02.013
[36] 王思源, 申健, 李盟军, 等. 不同改性生物炭功能结构特征及其对铵氮吸附的影响. 生态环境学报, 2019, 28(5):1037-1045.
[37] 李卓瑞, 韦高玲. 不同生物炭添加量对土壤中氮磷淋溶损失的影响. 生态环境学报, 2016, 25(2):333-338.
[38] 高德才, 张蕾, 刘强, 等. 旱地土壤施用生物炭减少土壤氮损失及提高氮素利用率. 农业工程学报, 2014, 30(6):54-61.
[39] 韩玮, 申双和, 谢祖彬, 等. 生物炭及秸秆对水稻土各密度组分有机碳及微生物的影响. 生态学报, 2016, 36(18):5838-5846.
[40] 陈少毅, 许超, 张文静, 等. 生物质炭与氮肥配施降低水稻重金属含量的盆栽试验. 农业工程学报, 2014, 30(14):189-197.
[1] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[2] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[3] Qin Meng, Cui Shize, He Xiaodong, Zhai Lingxia, Tao Bo, Wang Zhaojun, Zhao Haicheng, Li Hongyu, Zheng Guiping, Liu Lihua. Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients [J]. Crops, 2022, 38(6): 159-166.
[4] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[5] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[6] Jiang Shukun, Wang Lizhi, Yang Xianli, Zhang Xijuan, Liu Kai, Chi Liyong, Li Rui, Lai Yongcai. Spatiotemporal Change Characteristics of Rice Growth Climate Resources in Saline-Alkaline Area of Songnen Plain from 1961 to 2019 [J]. Crops, 2022, 38(6): 214-219.
[7] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
[8] Zhang Chonghua, Duan Licheng, Wang Shangming, Zhang Qingxia, Wang Chengzi, Wu Fengyu, Yang Lin. Effects of Sowing Date on Late-Rice Yield and Utilization of Heat-Light Resources in Jiangxi Province [J]. Crops, 2022, 38(5): 229-234.
[9] Pan Junfeng, Liu Yanzhuo, Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua, Li Meijuan, Hu Rui. Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China [J]. Crops, 2022, 38(5): 241-248.
[10] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[11] Zhou Yujiao, Zhang Weiyang, Yang Jianchang. Research Advances on High Temperature Induced-Impairment in Spikelet-Opening and Pistil-Fertilization of Photo-Thermo-Sensitive Genic Male Sterile Rice Lines [J]. Crops, 2022, 38(4): 1-8.
[12] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[13] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[14] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
[15] Zheng Siyi, Yang Ye, Song Yuanhui, Hua Qin, Lin Quanxiang, Zhang Haitao, Cheng Zhijun. Identification and Fine Mapping of Sugary Endosperm Mutant m5788 in Rice (Oryza sativa L.) [J]. Crops, 2022, 38(4): 14-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[4] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot[J]. Crops, 2018, 34(4): 154 -160 .
[5] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat[J]. Crops, 2018, 34(4): 84 -88 .
[6] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9"[J]. Crops, 2018, 34(4): 89 -94 .
[7] Zhengui Yuan,Pingping Chen,Lili Guo,Naimei Tu,Zhenxie Yi. Varietal Difference in Yield and Cd Accumulation and Distribution in Panicle of Rice Affected by Soil Cd Content[J]. Crops, 2018, 34(1): 107 -112 .
[8] Liangmei Chen,Jiangxia Li,Zhaoyun Hu,Wenling Ye,Wenge Wu,Youhua Ma. Review on Application of Low Accumulation Crops on Remediation of Farmland Contaminated by Heavy Metals[J]. Crops, 2018, 34(1): 16 -24 .
[9] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm[J]. Crops, 2018, 34(1): 25 -34 .
[10] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines[J]. Crops, 2018, 34(1): 41 -48 .