Crops ›› 2016, Vol. 32 ›› Issue (2): 43-49.doi: 10.16035/j.issn.1001-7283.2016.02.008

Previous Articles     Next Articles

Development of a Set of 7S and 11S Multi-Subunit-Deficient Mutants with Chinese Soybean Genetic Background

Guo Bowen,Zhao Xue,Wei Xiaoshuang,Han Yanjing,Liang Qiangfei,Song Bo,Liu Shanshan   

  1. Key Laboratory of Soybean Biology in Chinese Ministry of Education,Northeast Agricultural University,Harbin 150030,Heilongjiang,China
  • Received:2015-12-23 Revised:2016-03-15 Online:2016-04-15 Published:2018-08-26
  • Contact: Shanshan Liu

Abstract:

By different breeding methods, i.e. backcross, three-way cross combined pedigree selection, a novel set of multi-subunit-deficiency lines was developed by using a multi-subunit-deficiency breeding material RiB as subunit-deficiency donor parent, and Chinese cultivar Dongnong 47 as a genetic background. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, seven band-deficiency types characterized by:(α+11S groupⅡa)-null, (α′+11S groupⅡa)-null, [(α′+α)+11S groupⅡa,Ⅱb]-null, [(α′+α)+11S groupⅡa]-null, [(α′+α)+11S groupⅡb+X1X2]-null, [(α′+α)+11S groupⅡb]-null and (α′+11S groupⅠ,Ⅱa)-null were detected. An comprehensive evaluation of the agronomic performance, amino acid composition and amino acid content analysis revealed that, compared with control, all 7 mutant genotypes showed a generally higher content of amino acids composition. Total protein content in these mutant seeds was higher than that of recurrent parent Dongnong 47, and arginine (Arg) content was especially enriched. The content of total amino acids, 17 amino acid compositions and sulfer-containing amino acids of novel line G2-2-3, which lacked (α+11S groupⅡa)-subunits, were all significantly higher than that of Dongnong 47, and its Arg content was 7.27mg/g higher than Dongnong 47. These results indicate that novel multi-subunit-null lines lacking allergen-subunits appear to contain markedly increased amino acid content and modified storage protein subunit composition. This set of multi-subunit-deficiency variants with Chinese soybean genetic background would be expected to be favorable material for soybean engineering breeding of modifying globulin composition and subunit composition projects.

Key words: Soybean, Storage protein, Chinese genetic background, Multi-subunit-deficient mutants, New germplasm

Fig.1

SDS-PAGE patterns of protein obtained form soybean lines have different 7S and 11S subunit deficiency composition."

Fig.2

The representative plants of 7S and 11S multi-subunit-null soybean lines"

Table 1

Protein, oil contents and performance of major agronomics of 7S and 11S multi-subunit-null soybean lines"

品系
Lines
亚基表现
Subunit composition
世代
Generation
叶型
Blade profile
花色
Flower color
熟期(d)
Growth period
株高(cm)
Plant height
百粒重(g)
100-seed weight
蛋白(%)
Protein
油份(%)
Fat
东农47 7S、11S亚基表现正常 亲本 尖叶 白色 115 78.20±2.1680b 20.39±0.8862bc 40.92±0.6458cd 22.38±0.1643a
绥农10 7S、11S亚基表现正常 三交亲本 尖叶 白色 120 93.00±3.3912a 18.54±1.0896cd 41.02±0.8228cd 21.40±0.2646c
G2-2-3 (α+11S groupⅡa)-缺失型 三交F8 中间型 白色 132 72.00±3.9370bc 16.96±0.8961d 43.96±0.8143a 20.20±0.5568d
BC5-84 (αˊ+11S groupⅡa)-缺失型 BC1F6 尖叶 白色 130 68.00±3.5355c 22.23±1.5341ab 41.36±1.4293bcd 21.80±0.1899bc
BC5-148-1 [(α+αˊ)+11S groupⅡa、Ⅱb]-缺失型 BC1F5 尖叶 白、紫 138 76.00±5.2440b 21.31±0.3938b 40.72±1.2598cd 21.98±0.4712ab
BC5-94 [(α+αˊ)+11S groupⅡa]-缺失型 BC1F6 尖叶 白色 128 67.00±2.4495c 23.37±1.1481a 41.10±0.4848cd 21.98±0.3033ab
BC5-11-1 [(α+αˊ)+11S groupⅡb+X1X2]-缺失型 BC1F5 尖叶 白色 140 69.00±7.6812c 22.37±1.9067ab 42.80±1.1180ab 21.74±0.3209bc
BC5-11-2 [(α+αˊ)+11S groupⅡb]-缺失型 BC1F5 尖叶 白色 138 72.80±6.4962bc 18.94±2.2821cd 41.60±1.9634bc 21.74±0.5505bc
C4832 (αˊ+11S groupⅠ、Ⅱa)-缺失型 BC3F4 尖叶 白色 110 72.00±4.3589bc 17.86±1.7196d 39.84±0.8264d 22.08±0.2388ab

Table 2

Amino acid and free amino acid composition in soybean of Dongnong47、G2-2-3、BC5-84 and BC5-94"

氨基酸含量(mg/g)Amino acids 游离氨基酸含量(mg/g)Free amino acids
东农47
Dongnong47
G2-2-3 BC5-84 BC5-94 东农47
Dongnong47
G2-2-3 BC5-84 BC5-94
必需氨基酸Essential amino acids
Thr 13.20±0.10c 16.10±0.20a 15.30±0.26b 16.03±0.15a 0.2340±0.0030b 0.3330±0.0547a 0.2673±0.0673ab 0.3377±0.0321a
Val 14.90±0.30c 18.00±0.17a 16.70±0.46b 17.63±0.15a 0.1155±0.0015b 0.1153±0.0032b 0.1350±0.0151a 0.1307±0.0106ab
Met 3.70±0.10c 5.17±0.06a 4.47±0.06b 4.50±0.17b 0.0715±0.0025a 0.0720±0.0017a 0.0760±0.0122a 0.0713±0.0031a
Ile 14.50±0.30c 18.17±0.15a 17.40±0.36b 17.50±0.20b 0.0995±0.0025a 0.0763±0.0015b 0.1037±0.0107a 0.0987±0.0040a
Leu 27.00±0.30c 31.33±0.23a 29.53±0.55b 29.40±0.20b 0.1860±0.0060a 0.1090±0.0044c 0.1720±0.0128a 0.1537±0.0070b
Phe 18.17±0.21c 21.20±0.17a 19.67±0.32b 19.60±0.00b 0.1890±0.0010c 0.2107±0.0029bc 0.2340±0.0161ab 0.2517±0.0318a
Lys 22.83±0.21d 26.37±0.21a 24.47±0.42b 23.53±0.12c 0.2365±0.0085b 0.2600±0.0036ab 0.2947±0.0410a 0.2723±0.0144ab
非必需氨基酸Non-essential amino acids
Asp 38.20±0.79c 46.47±0.76a 42.73±0.81b 42.80±0.35b 0.6475±0.0475c 0.9000±0.0376b 0.9130±0.0467b 1.0103±0.0572a
Ser 17.93±0.31c 20.47±0.42a 19.17±0.32b 19.13±0.15b 0.0915±0.0015b 0.1193±0.0145ab 0.1117±0.0239ab 0.1307±0.0111a
Glu 60.40±1.05c 66.53±0.40a 61.90±0.87b 57.87±0.45d 0.4185±0.0465c 0.7137±0.0862b 0.8237±0.0723b 1.0900±0.0244a
Gly 14.67±0.6d 16.73±0.06a 15.43±0.31c 16.23±0.12b 0.0535±0.0005b 0.0860±0.0964a 0.0863±0.0257a 0.0897±0.0096a
Ala 14.60±0.20c 16.40±0.00a 15.73±0.40b 16.13±0.12ab 0.1290±0.0020c 0.1403±0.0133c 0.1993±0.0121b 0.2397±0.0153a
Cys 5.30±0.10b 5.80±0.17a 5.30±0.10b 5.37±0.15b 0.1670±0.0020c 0.2317±0.0168a 0.2007±0.0025b 0.1797±0.0032c
Tyr 11.30±0.17b 12.00±0.10a 10.97±0.32b 11.30±0.00b 0.1110±0.0030b 0.1540±0.0017a 0.1667±0.0341a 0.1570±0.0210a
His 8.87±0.12d 12.43±0.23a 10.40±0.17c 11.03±0.12b 0.0995±0.0115b 0.3560±0.0821a 0.3380±0.0389a 0.3247±0.0355a
Arg 23.27±0.35c 35.77±1.70a 31.87±0.91b 30.87±0.99b 1.1735±0.0445c 8.4473±1.8440a 5.8207±0.3857b 6.4193±0.7376b
Pro 18.33±0.45d 20.73±0.25a 19.57±0.21b 18.93±0.25c 0.1665±0.0005b 0.2050±0.0053a 0.1887±0.0194ab 0.1800±0.0131b
TAA 327.17±4.15c 389.67±4.71a 360.60±6.15b 357.87±1.25b 4.1895±0.1045c 12.5297±2.1430a 10.1320±0.6706b 11.1370±0.8595ab
含硫氨基酸Sulfur-cotaining amino acids
Met+Cys 9.00±0.20c 10.97±0.15a 9.77±0.12b 9.87±0.25b 0.2385±0.0045c 0.3037±0.0152a 0.2767±0.0100b 0.2510±0.0062c
[1] Koshiyama I . Chemical and physical properties of a 7S protein in soybean globulins. Cereal Chemistry, 1968,45:394-404.
[2] Utsumi S, Kinsella J E . Forces involved in soy protein gelation: effects of various reagents on the formation,hardness and solubility of heat-induced gels made from 7S,11S and soy isolate. Journal of Food Science, 1985,50:1278-1282.
doi: 10.1111/jfds.1985.50.issue-5
[3] Salleh M R B, Maruyama N, Takahashi K , et al. Gelling properties of soybean beta-conglycinin having different subunits compositions.Bioscience,Biotechnology, and Biochemistry, 2004,68:1091-1096.
[4] Aoyama T, Kohno M, Saito T , et al. Reduction by phytate-reduced soybean beta-conglycinin of plasma triglyceride level of young and adult rat.Bioscience,Biotechnology, and Biochemistry, 2001,65:1071-1075.
[5] Manzoni C, Lovati M R, Ggianazza E , et al. Soybean protein products as regulators of liver low-density lipoproteinreceptors Ⅱ.a α′ rich commercial soy concentrate and a deficient mutant differently affect low-density lipoproteinreceptor activation. Journal of Agricultural and Food Chemistry, 1998,46:2481-2484.
doi: 10.1021/jf980100c
[6] Sirtori C R, Lovati M R, Manzoni C , et al. Soy and cholesterol reduction clinical experience. Journal of Nutrition, 1995,125:598-605.
[7] Schuler M A, Schmitt E S, Beachy R N . Closely related families of genes code for the α and α′ subunits of the soybean 7S storage protein complex. Nucleic Acids Research, 1982,10:8225-8243.
doi: 10.1093/nar/10.24.8225
[8] Sebastiani F L, Farrell L B, Schuler M A , et al. Complete sequence of a cDNA of α subunit of soybean β-conglycinin. Plant Molecular Biology, 1990,15:197-201.
doi: 10.1007/BF00017745
[9] Tierney M L, Bray E A, Allen R D , et al. Isolation and characterization of a genomic clone encoding the β-subunit of β-conglycinin. Planta, 1987,172:356-363.
doi: 10.1007/BF00398664
[10] Than V H, Shibasaki K . Beta-conglycinin from soybean proteins.Isolation and immunological and physicochemical properties of the monomeric forms. Biochimica et Biophysica Acta, 1977,490:370-384.
doi: 10.1016/0005-2795(77)90012-5
[11] Staswick P E, Hermodson M A, Nielsen N C . Identification of the acidic and basic subunit complexes of glycinin. Biological Chemistry, 1981,256:8752-8755.
[12] Kaviani B, Kharabian A . Improvement of the nutritional value of soybean [Glycine max (L.) Merr.]seed with alteration in protein subunit of glycinin (11S globulin) and beta-conglycinin (7S globulin). Turkish Journal of Biology, 2008,32:91-97.
[13] Tsukada Y, Kitamura K, Harada K , et al. Genetic analysis of subunits of two major storage protein (β-conglycinin and glycinin) in soybean seeds. Japanse Journal of Breed, 1986,36:390-400.
doi: 10.1270/jsbbs1951.36.390
[14] Vaintraub I A, Shutov A D . Moleeular weight of subunits of soybean 11S proteins. Biokhimiia, 1971,36(5):1086-1088.
[15] Adachi M, Takenaka Y, Gidamis A B . Crystal structure of soybean proglycinin AlaBlb homotrimer. Journal of Molecular Biology, 2001,305:291-305.
doi: 10.1006/jmbi.2000.4310
[16] Adachi M, Kanalnori J, Masuda T . Crystal structure of soybean 11S globulin:glycinin A3B4 homohexamer. Proceedings of the National Academy of Science of the United States of America, 2003,100:7395-7400.
doi: 10.1073/pnas.0832158100
[17] Staswick P E, Hermodson M A, Nilsen N C . Identification of the cystines which link the acidic and basic components of the glycinin subunits. Biological Chemistry, 1984,259:13431-13435.
[18] Ygasaki K, Kaizuma N, Kltamura K . Inheritance of glyeinin subunits and characterization of glyinin molecules lacking the subunits in soybean [Glyeine max(L.)Merr.]. Breeding Science, 1996,46:11-15.
[19] Nielsen N C, Diekinson C D, Cho T J . Characterization of the glycinin gene family in soybean. Plant Cell, 1989,1:313-328.
doi: 10.1105/tpc.1.3.313
[20] Fukushina D . Recent progress of soybean protein foods. Food Reviews International, 1991,7:323-335.
doi: 10.1080/87559129109540915
[21] Yamaauchi F . Molecular understanding of soybean protein. Food Reviews International, 1991,7:283-332.
doi: 10.1080/87559129109540914
[22] Takahashi M, Uematsu Y, Kashiwaba K , et al. Accumulations of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta, 2003,217:577-586.
doi: 10.1007/s00425-003-1026-3
[23] Jennings A C, Morton R K . Amino acids and protein synthesis in developing wheat endosperm. Australia Journal of Boil Science, 1963,16:384-394.
[24] Mertz E T, Bates L S, Nelson O E . Mutant gene that changes protein composition and increased lysine content of maize endosperm. Scinence, 1964,145:279-280.
doi: 10.1126/science.145.3629.279
[25] Misra P S, Mertz E T, Glover D V . Studies on corn proteins:Ⅷ.Free amino acid content of opaque-2 and double mutants. Cereal Chemistry, 1975,52:844-848.
[26] Mauri I, Maddaloni M, Lohmer S , et al. Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yease. Molecular and General Genetics, 1993,241:319-326.
[27] Or E, Boyer S K, Larkins B A . Opaque2 modifies act post-transcriptionally and in a polar manner on gamma-zein gene expression in maize endosperm. Plant cell, 1993,5:1599-1609.
[28] Gillikin J W, Zhang F, Coleman C E , et al. A defective sign peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. Plant Physiology, 1997,114, 345-352.
doi: 10.1104/pp.114.1.345
[29] Coleman C E, Lopes M A, Gillikin J W , et al. A defective signal peptide in the maize high-lysine mutant floury-2. Proceedings of National Academy Sciences USA, 1995,92:6828-6831.
doi: 10.1073/pnas.92.15.6828
[30] Mertz E T. Thirty years of opaque2 maize. In BA Larkins,ET Mertz,eds,Quality protein Maize 1964-1994.Purdue University Press,West Lafayette, 1997: 25-37.
[31] Kim C S, Gibbon B C, Gillikin J W , et al. The maize mucronate mutation is a deletion in the 16-kDa gamma-zein gene that induces the unfolded protein response. Plant Journal, 2006,48:440-451.
doi: 10.1111/tpj.2006.48.issue-3
[32] Geevers H O, Lake J K . Development of modified opaque2 maize in South Africa. American Association of Cereal Chemists, 1992: 49-78.
[33] Glover D V . Corn protein-genetics,breeding,and value in foods and feeds. American Association of Cereal Chemists, 1992: 49-78.
[34] Harada K, Hayashi M, Tsubokura Y . Genetic variation of globulin composition in soybean seeds. Agriculture Research Updates, 2013,5:101-116.
[35] Cantón F R, Suáez M F, Cánovas F M . Molecular aspects of nitrogen mobilization and recycling in trees. Photosynthesis Research, 2005,83:265-278.
doi: 10.1007/s11120-004-9366-9
[36] Cheng L, Ma F, Ranwala D . Nitrogen storage and its interaction with carbohydrates of young apple trees in response to nitrogen supply. Tree Physiology, 2004,24:91-98.
doi: 10.1093/treephys/24.1.91
[1] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System [J]. Crops, 2018, 34(4): 114-120.
[2] Mingjun Zhang,Zhongfeng Li,Lili Yu,Jun Wang,Lijuan Qiu. Identification and Screening of Protein Subunit Variation Germplasm from Both Mutants and Natural Population in Soybean [J]. Crops, 2018, 34(3): 44-50.
[3] Jiani Zhu,Huiping Dai,Shuhe Wei,Genliang Jia,Dejing Chen,Jinjin Pei,Qing Zhang,Long Qiang. Effects of Applying Zn on the Growth and Zn Accumulation in Soybean at Flowering Stage [J]. Crops, 2018, 34(1): 152-155.
[4] Tianle Ma,Jianxin Zhang. Effects of Different Multiple Cropping Methods on Dry Matter Accumulation, Distribution and Yield of Summer Soybean [J]. Crops, 2018, 34(1): 156-159.
[5] Lina Li,Longguo Jin,Chuanxiao Xie,Changlin Liu. Determining Blind Samples of Transgenic Maize and Transgenic Soybean [J]. Crops, 2017, 33(6): 37-44.
[6] Xuechao Zhou,Surong Ding,Yunshan Wei,Yanfang Zhou,Xue Wei,Rina Na,Feng Li. Evaluation of Adaptability of Different Vegetable Soybean Cultivars (Lines) in Chifeng Area [J]. Crops, 2017, 33(3): 44-48.
[7] Guoyong Ren,Wei Li,Lifeng Zhang,Caijie Wang,Haiying Dai,Jinlong Wang,Ran Xu,Yanwei Zhang. The Resistance to Soybean Cyst Nematode Race 1 of Transgenic Soybean with hrf2 Encoding HarpinXooc [J]. Crops, 2017, 33(3): 49-53.
[8] Xuli Zhang,Baolong Xing,Guimei Wang,Lili Yin. Effects of Planting Density on Agronomic Traits, Economic Traits and Yield of Soybean in North of Shanxi Province [J]. Crops, 2017, 33(3): 127-131.
[9] Xiting Zhang,Liwei Cao,Shucai Lü,Guoxing Chen,Yongji Wang,Shuhan Yu,Zhenping Gong. Effects of Bulk Density on Nitrogen Absorption and Yield of Soybean on Black Soil [J]. Crops, 2017, 33(3): 132-137.
[10] Yixin Tian,Fengju Gao. The Response of Growth and Dry Matter Accumulation and Distribution of High Protein Soybean to Plant Density [J]. Crops, 2017, 33(2): 121-125.
[11] Li Yan,Qiang Yang,Yupeng Shao,Dandan Li,Zhikun Wang,Wenbin Li. Cloning and Sequence Analysis of GmWRI1a Gene Promoter in Soybean [J]. Crops, 2017, 33(2): 51-58.
[12] Yu Gao,Yanchao Liu,Shusen Shi,Juan Cui,Jinfeng Xiong. Review on Soybean Thrips in China [J]. Crops, 2017, 33(1): 8-13.
[13] Haiyan Li,Deli Cai,Jingsheng Chen,Yuxi Duan,Lijie Chen,Yingyu Shang. The Influence of Resistant and Susceptible Soybean Germplasm on Growth Dynamic Changes of Soybean Cyst Nematode Race 3(SCN3) [J]. Crops, 2017, 33(1): 144-149.
[14] Qianxu Zhao,Xianrong Yue,Yunsheng Xia,Naiming Zhang,Fuzhao Nian,Yunqiang Yang,Yulin Ma. Effects of Arbuscular Mycorrhizal Fungus Inoculation on Growth and Nitrogen Utilization of Intercropped Maize and Soybean in Purple Soil under Facilitated Condition [J]. Crops, 2016, 32(5): 94-100.
[15] Zhao Geng,Youbin Kong,Lili Zhao,Cui Liu,Hui Du,Xihuan Li,Caiying Zhang. Transformation of GmPHR1 and GmPAP4 Related to High Phosphorus Efficiency and Elite Germplasm Enhancement in Soybean (Glycine max) [J]. Crops, 2016, 32(3): 58-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .