Crops ›› 2017, Vol. 33 ›› Issue (3): 39-43.doi: 10.16035/j.issn.1001-7283.2017.03.008

Previous Articles     Next Articles

Analysis and Evaluation of Different Models for Yield Stability of Peanut Cultivars in Southern Shanxi

Ning Dongxian,Zhao Yukun,Yan Cuiping,Yang Xiuli,Xiao Junhong,Yang Liping   

  1. Institute of Wheat Research,Shanxi Academy of Agricultural Sciences,Linfen 041000,Shanxi,China
  • Received:2017-03-01 Revised:2017-04-07 Online:2017-06-15 Published:2018-08-26

Abstract:

In order to explore the characteristic expression rules of the peanut cultivars under different statistic models, 6 sites and 7 breeds were surveyed in southern Shanxi. The data were used in 4 models which were Eberhart-Russell、AMMI、DTOPSIS and PCA, to comparatively evaluate different peanut cultivars and the adaptability of the statistic models. The results of all the four models differed because of the different statistic calculation. Jinhua8, Huayu911 and Linhua9 cultivars showed better genetic stability in Eberhart-Russell model, while Huayu911 and Zhanghupo showed better cultivar stability and site discrimination in yield variation for AMMI biplot and Di parameter. Linhua9 and Huayu911 were optimal cultivars with synthetically multiple characters in DTOPSIS model, while Linhua9 and Jinhua8 were optimal in PCA model. With the actual field yield performance, we thought the effect of GEI interaction was more scientifically reflected by additive genetic model in AMMI analysis, the DTOPSIS analysis was more advantageous in multiple cultivars and traits comparison.

Key words: Peanut, Yield stability, Model

Table 1

Yield variance analysis results of different peanut cultivars"

Eberhart-Russell模型方差分析Variance analysis of ER model AMMI模型分析Analysis of AMMI model
来源Source DF SS MS F 来源Source DF SS MS F
Groups 12 2 867.24 238.94 1.17 Total 125 235 390.71 1 883.13
E 5 11 422.31 2 284.46 11.17** T 41 217 792.41 5 312.01 25.36**
C 6 148 695.08 24 782.51 121.13** G 6 148 695.08 24 782.51 118.29**
C×E 30 57 675.02 1 922.50 9.40** E 5 11 422.31 2 284.46 10.90**
Error 72 14 731.06 204.60 GEI 30 57 675.02 1 922.50 9.18**
IPCA1 10 27 187.16 2 718.72 2.14*
IPCA2 8 16 082.43 2 010.30 2.36**
IPCA3 6 8 861.14 1 476.86 2.03*
Residues 6 5 544.30 924.05

Table 2

Analysis results of ER and AMMI model"

品种
Cultivar
Eberhart-Russell模型 ER model AMMI模型 AMMI model
回归离差S2di 变异度SCV(%) 回归系数Bi IPCA1 IPCA2 IPCA3 Dc 试点Site IPCA1 IPCA2 IPCA3 De
C1 -43.38 11.08 0.79 -0.35 7.04 -0.25 7.06 E1 -1.53 1.34 -5.78 6.13
C2 23.59 7.80 0.05 -3.74 -3.96 -2.34 5.93 E2 0.08 1.50 1.01 1.81
C3 -17.00 6.79 2.65 2.82 -2.69 2.98 4.91 E3 1.89 -7.36 0.11 7.60
C4 29.55 6.73 2.86 4.76 -0.77 -0.28 4.83 E4 -6.62 1.32 2.47 7.19
C5 6.67 5.08 0.95 0.19 0.13 3.29 3.30 E5 -0.54 -0.42 1.03 1.24
C6 -47.76 11.51 -1.35 -6.51 0.20 0.74 6.56 E6 6.72 3.62 1.16 7.72
C7 48.32 6.24 1.04 2.84 0.06 -4.14 5.02

Fig.1

Biplot of AMMI1"

Fig.2

Biplot of AMMI2"

Table 3

Analysis results of DTOPSIS and PCA model"

品种
Cultivar
DTOPSIS模型DTOPSIS model PCA模型PCA model PCA模型 PCA model
Di+ Di- Ci F1 F2 F3 F 主成分
Principal
component
特征值
Eigen
values
方差贡献率(%)
Contribution rate
of variance
累计方差贡献率(%)
Cumulative contribution
rate of variance
C1 0.37 0.14 0.27 -2.66 -2.14 0.78 -2.13 1 5.01 50.12 50.12
C2 0.17 0.33 0.66 1.01 3.16 -0.08 1.68 2 3.38 33.75 83.87
C3 0.20 0.22 0.52 -0.42 -0.20 -0.91 -0.39 3 0.94 9.36 93.23
C4 0.29 0.22 0.43 2.97 -1.76 -0.97 0.86 4 0.48 4.80 98.03
C5 0.20 0.24 0.55 -1.11 1.42 0.79 0.00 5 0.15 1.47 99.50
C6 0.26 0.21 0.45 -2.32 0.20 -0.93 -1.27
C7 0.27 0.23 0.46 2.52 -0.68 1.32 1.24

Table 4

Component matrix"

性状
Traits
主成分Component
1 2 3
生育期Growth period 0.885 0.216 0.151
主茎高Stem height -0.845 0.135 0.468
侧枝长Branch length -0.900 0.158 0.372
总分枝数Total branching number -0.753 -0.434 -0.427
结果枝数Number of branches with pods 0.798 -0.432 -0.296
单株果数Pod number/plant 0.757 0.213 0.337
百果重100-pods weight -0.212 0.959 -0.158
百仁重100-seeds weight -0.091 0.965 -0.209
单株生产力Pod yield/plant -0.062 0.964 -0.253
产量Yield 0.932 0.293 0.200

Table 5

Peanut cultivars’ synthetically evaluation and order in different model"

C1 C2 C3 C4 C5 C6 C7
实际产量排序Fact yield order 6 3 5 2 4 7 1
Eberhart-Russell模型ER model 5 3 6 4 2 7 1
AMMI模型AMMI model 7 5 3 2 1 6 4
DTOPSIS模型DTOPSIS model 7 1 3 6 2 5 4
PCA模型PCA model 7 1 5 3 4 6 2
[1] 周雪松, 赵谋明 . 我国花生食品产业现状与发展趋势.食品与发酵工业, 2004(6):84-89.
[2] 李明姝, 姚开, 贾冬英 , 等. 花生功能成分及其综合利用.中国油脂, 2004(9):13-15.
[3] 杜红亮, 费洪平, 宋金平 . 我国花生产业优势与问题分析.花生学报, 2003(3):8-14.
doi: 10.3969/j.issn.1002-4093.2003.03.002
[4] 汤松, 禹山林, 廖伯寿 , 等. 我国花生产业现状、存在问题及发展对策.花生学报, 2010(3):35-38.
[5] 万书波 . 我国花生产业面临的机遇与科技发展战略.中国农业科技导报, 2009(1):7-12.
[6] 农业部 . 全国种植业结构调整规划(2016-2020年). 北京:中华人民共和国农业部, 2016.
[7] 俞世蓉 . 作物的品种适应性和产量稳定性.作物杂志, 1991(1):36-37.
[8] 胡希远, 尤海磊, 宋喜芳 , 等. 作物品种稳定性分析不同模型的比较.麦类作物学报, 2009(1):110-117.
doi: 10.7606/j.issn.1009-1041.2009.01.021
[9] 金文林 . 作物区试中品种稳定性评价的秩次分析模型. 作物学报, 2000,26(6):925-930.
[10] 陈勇生, 邓海华, 刘福业 , 等. 对应用几种统计模型评价甘蔗品种稳定性的初步比较.生物数学学报, 2012(1):168-174.
[11] Graybosch R A, Peterson C J . Specific adaptation and genetic progress for grain yield in great plains hard winter wheats from 1987 to 2010. Crop Science, 2012,52(2):631.
doi: 10.2135/cropsci2011.08.0412
[12] Chamekh Z, Karmous C, Ayadi S , et al. Stability analysis of yield component traits in 25 durum wheat (Triticum durum Desf.) genotypes under contrasting irrigation water salinity. Agricultural Water Management, 2015,152:1-6.
doi: 10.1016/j.agwat.2014.12.009
[13] Taïbi K , Campo A D D,Aguado A ,et al. Early establishment response of different Pinus nigra,ssp. salzmanii,seed sources on contrasting environments:Implications for future reforestation programs and assisted population migration. Journal of Environmental Management, 2016,171:184-194.
[14] 李金琴, 朱国立, 吴国林 , 等. 蓖麻种子含油量与主要数量性状的相关及通径分析. 中国油料作物学报, 2004,26(2):44-47.
doi: 10.3321/j.issn:1007-9084.2004.02.010
[15] 黄英杰, 张岩 . 谷子品种产量及主要产量构成因素稳定性的分析.作物杂志, 2002(5):43-44.
doi: 10.3969/j.issn.1001-7283.2002.05.020
[16] 刘丽华, 胡远富, 陈乔 , 等. 利用AMMI模型分析寒地水稻3个品质性状的基因型与环境互作. 作物学报, 2013,39(10):1849-1855.
doi: 10.3724/SP.J.1006.2013.01849
[17] 王晨阳, 郭天财, 马冬云 , 等. 环境、基因型及其互作对小麦主要品质性状的影响.植物生态学报, 2008(6):1397-1406.
[18] 邓志英, 田纪春, 胡瑞波 , 等. 基因型和环境对小麦主要品质性状参数的影响.生态学报, 2006(8):2757-2763.
doi: 10.3321/j.issn:1000-0933.2006.08.045
[19] 卢会翔, 唐道彬, 吴正丹 , 等. 甘薯产量、品质及农艺性状的基因型与环境效应研究.中国生态农业学报, 2015(9):1158-1168.
[20] 孙亚男, 仕相林, 蒋洪蔚 , 等. 大豆百粒重QTL的上位效应和基因型×环境互作效应.中国油料作物学报, 2012(6):598-603.
[21] 徐淑良, 房毅, 王利民 . Eberhart-Russell和Tai法计算品种稳定性参数的程序设计.山东农业科学, 1995(1):48-51.
[22] 刘博, 卫玲, 樊云茜 , 等. 基于AMMI模型的黄淮海夏大豆国家区试产量分析.中国农学通报, 2015(27):69-74.
[23] 龙腾芳, 郭克婷 . DTOPSIS法的程序设计及其在作物品种评价中的应用.中国农学通报, 2004(3):252-254.
[24] 赵玉坤, 高根来, 田玮玮 , 等. 基于PCA方法的夏玉米穗部性状综合评价.农学学报, 2015(3):20-25.
[25] 董孔军, 何继红, 杨天育 . 甘肃省糜子区试品种(系)稳定性的AMMI分析.作物杂志, 2008(3):73-76.
doi: 10.3969/j.issn.1001-7283.2008.03.024
[1] Wang Hanxia, Shan Fuhua, Tian Liping, Ma Qiaoyun, . Analysis of Stability and Adaptability of Winter#br# Wheat Varieties in the Regional Trials of#br# the Northern Wheat Region of China [J]. Crops, 2018, 34(5): 40-44.
[2] Chen Yingying, Wangxu Yiling, Zhu Yuhan, . Hyperspectral Estimation of Nitrogen#br# Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[3] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut [J]. Crops, 2018, 34(4): 102-105.
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin [J]. Crops, 2018, 34(4): 8-12.
[5] Jiangchun Song,Shuanzhu Li,Jianyu Wang,Xiuge Zhang,Xuefeng Zhu,Jianli Qiao,Zhen Xiang. Advances in Breeding of High Oil Peanut in China [J]. Crops, 2018, 34(3): 25-31.
[6] Weihai Hou,Jianlin Wang, ,Dan Hu. Comparison of Photosynthesis-Light Response Curve Fitting Model of Hulless Barley [J]. Crops, 2017, 33(4): 96-104.
[7] Wenzhao He,Hongwu Wang,Xiaojiao Hu,Kun Li,Qi Wang,Yujin Wu,Zhifang Liu,Changling Huang. Quantitative Genetic Research of Plant Height and Ear Height in Maize under Different Environments [J]. Crops, 2017, 33(3): 13-18.
[8] Shuanzhu Li,Jiangchun Song,Jianyu Wang,Xiuge Zhang,Jianli Qiao,Ning Liu. Advances in Genetics and Breeding of High Oleic Acid Peanut [J]. Crops, 2017, 33(3): 6-13.
[9] Xin Gu,Ping Wang,Xiaohe Yang,Liangliang Yao,Wei Liu,Haihong Zhao,Junjie Ding,Hongbo Shen. Establishment of Short-Term Forecasting Model for Rice Sheath Rot in Sanjiang Plain [J]. Crops, 2017, 33(3): 162-165.
[10] Xiayan Chen,Lianxi Wang,Jingquan Ren,Chunming Guo,Qi Li,Yingying Li. Analysis on Potential Productivity and Climatic Influence Factors of Spring Maize in Jilin [J]. Crops, 2016, 32(6): 91-98.
[11] Zhurong Zheng,Ruixiang Zhang,Tingting Yang,Lichao Wen,Xuefeng Shen. Effects of Salt Stress on Physiological and Biochemical Characteristics of Roots in Peanut [J]. Crops, 2016, 32(4): 142-145.
[12] Yiming Liu,Zhao Ling,Yufen Han,Guimei Yang,Jingtao Wen. Effects of Selenium(Se) Fertilizer Concentration on Se Content of Red Peanut [J]. Crops, 2016, 32(2): 105-106.
[13] Jiantao Zhang,Guoqiang Li,Dandan Chen,Xiao Feng,Guoqing Zheng. Comparison of Using DSSAT and Fuzzy Mathematics for Climatic Suitability Model of Winter Wheat [J]. Crops, 2016, 32(2): 159-164.
[14] Peng Wang,Yinchu Chen,Wanyun Li,Shengli Liu,Yantao Liu,Gang Zhao. The Effect of the Botanical Traits on the Yield Model in Broomrape Resistant Sunflower [J]. Crops, 2016, 32(1): 38-45.
[15] . [J]. Crops, 2013, 29(3): 90-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .