Crops ›› 2023, Vol. 39 ›› Issue (6): 17-25.doi: 10.16035/j.issn.1001-7283.2023.06.003

Previous Articles     Next Articles

Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures

Liu Xiwei(), Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai(), Chang Xuhong()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2022-06-29 Revised:2022-09-01 Online:2023-12-15 Published:2023-12-15

Abstract:

The wheat development impacted by drought and heat more frequently in the complex climatic conditions, thus yield was decreased. Wheat yield is determined by the kernel number per spike and kernel weight for a given spike number. The differentiation of ability of female spike, the number of spikelet floret primordium, the anther and pollen activity decrease, and the development of embryo and endosperm were inhibited in drought and heat stress, resulted in decreases of the number of spikelet differentiation, the fertile florets, fertilization florets, and grain abortion, and the grain number per spike was reduced. After the grain number per spike was established, the drought and heat stress reduce the rate of endosperm cells differentiation and growth. The number of endosperm cells and storage capacity decrease. Meanwhile, the grain filling characteristics are changed, and the grain weight decrease. Thus, the effects of drought and high temperature on wheat yield formation involves a series of complex processes such as spikelet differentiation, floret development, floret fertilization, grain building and grain filling. This paper introduce the physiological mechanism of wheat yield reduction from the stage of grain number formation and the process of grain weight accumulation in wheat production. The mitigation measures taken in wheat production to deal with drought and high temperature are summarized. Clarifying the key stage affecting the formation of ear grain number and the key metabolic pathway of grain weight accumulation can provide a theoretical basis for the breeding and cultivation techniques of the stress-resistant wheat varieties.

Key words: Wheat, Drought, Heat, Combined stress, Yield

Fig.1

The process of wheat yield formation S: sowing; DR: double ridge; TS: terminal spikelet; AN: anthesis period; FC: fertilization completed; MPG: most of the grain; M: maturity stage"

Fig.2

The process of starch synthesis from sucrose in wheat kernel"

[1] Peng S B, Huanag J L, Sheey J E. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27):9971-9975.
[2] Lobell D B, Schlenker W, Costa-roberts J. Climate trends and global crop production since 1980. Science, 2011, 333(6042):616-620.
doi: 10.1126/science.1204531 pmid: 21551030
[3] Awulachew T M. Environmental impact on processing quality of wheat grain. International Journal of Food Science,Nutrition and Dietetics, 2019(S1):1-8.
[4] Liu B, Asseng S, Mülle C, et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6 (12):1130-1136.
doi: 10.1038/nclimate3115
[5] Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature, 2016, 529:84-87.
doi: 10.1038/nature16467
[6] 周文魁. 气候变化对中国粮食生产的影响及应对策略. 南京: 南京农业大学, 2012.
[7] Killi D, Bussotti F, Raschi A, et al. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiologia Plantarum, 2017, 159 (2):130-147.
doi: 10.1111/ppl.2017.159.issue-2
[8] Asseng S, Foster I, Turner N C. The impact of temperature variability on wheat yields. Global Change Biology, 2011, 17(2):997-1012.
doi: 10.1111/gcb.2010.17.issue-2
[9] 熊伟, 居辉, 许吟隆, 等. 气候变化下我国小麦产量变化区域模拟研究. 中国生态农业学报, 2006, 14(2):164-167.
[10] 于振文, 岳寿松, 沈成国, 等. 不同密度对冬小麦开花后叶片衰老和粒重的影响. 作物学报, 1995, 21(4):412-418.
[11] 王兆龙, 曹卫星, 戴廷波. 小麦穗粒数形成的基因型差异及增粒途径分析. 作物学报, 2001, 27(2):236-242.
[12] Kirby E J M. Analysis of leaf,stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crops Research, 1988, 18(2/3):127-140.
doi: 10.1016/0378-4290(88)90004-4
[13] Sibony M, Pinthus M J. Floret initiation and development in spring wheat (Triticum aestivum L.). Annals of Botany, 1988, 61 (4):473-479.
doi: 10.1093/oxfordjournals.aob.a087578
[14] Stockman Y M, Fischer R A, Brittain E G. Assimilate supply and floret development within the spike of wheat. Functional Plant Biology, 1983, 10(6):585-594.
doi: 10.1071/PP9830585
[15] Reynolds M, Foulkes M J, Slafer G A, et al. Raising yield potential in wheat. Journal of Experimental Botany, 2009, 60(7):1899-1918.
doi: 10.1093/jxb/erp016 pmid: 19363203
[16] Slafer G A, Savin R, Sadras V O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Research, 2014, 157:71-83.
doi: 10.1016/j.fcr.2013.12.004
[17] Guo Z, Schnurbusch T. Variation of floret fertility in hexaploid wheat revealed by tiller removal. Journal of Experimental Botany, 2015, 66(19):5945-5958.
doi: 10.1093/jxb/erv303 pmid: 26157170
[18] Reynolds M, Foulkes M J, Furbank R, et al. Achieving yield gains in wheat. Plant,Cell and Environment, 2012, 35(10):1799-1823.
doi: 10.1111/pce.2012.35.issue-10
[19] González-Navarro O G, Griffiths S, Molero G, et al. Dynamics of floret development determining differences in spike fertility in an elite population of wheat. Field Crops Research, 2015, 172 (15):21-31.
doi: 10.1016/j.fcr.2014.12.001
[20] Ehdaie B, Alloush G A, Waines J G. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research, 2008, 106(1):34-43.
doi: 10.1016/j.fcr.2007.10.012
[21] Reynolds M P, Balota M, Delgado M I B, et al. Physiological and morphological traits associated with spring wheat yield under hot,irrigated conditions. Functional Plant Biology, 1994, 21(6):717-730.
doi: 10.1071/PP9940717
[22] González F G, Miralles D J, Slafer G A. Wheat floret survival as related to pre-anthesis spike growth. Journal of Experimental Botany, 2011, 62(14):4889-4901.
doi: 10.1093/jxb/err182 pmid: 21705386
[23] Miralles D J, Katz S D, Colloca A, et al. Floret development in near isogenic wheat lines differing in plant height. Field Crops Research, 1998, 59(1):21-30.
doi: 10.1016/S0378-4290(98)00103-8
[24] Zhu Y G, Chu J P, Dai X L, et al. Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. European Journal of Agronomy, 2019, 104:49-62.
doi: 10.1016/j.eja.2019.01.006
[25] Zhang Z, Li J, Hu N Y, et al. Spike growth affects spike fertility through the number of florets with green anthers before floret abortion in wheat. Field Crops Research, 2021, 260:108007.
doi: 10.1016/j.fcr.2020.108007
[26] Ji X M, Shiran B, Wan J L, et al. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant,Cell and Environment, 2010, 33(6):926-942.
doi: 10.1111/pce.2010.33.issue-6
[27] Wang S P, Zhang G S, Zhang Y X, et al. Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat (Triticum aestivum L.). Journal of Experimental Botany, 2015, 66(20):6191-6203.
doi: 10.1093/jxb/erv322
[28] 王伟, 蔡焕杰, 王健, 等. 水分亏缺对冬小麦株高叶绿素相对含量及产量的影响. 灌溉排水学报, 2009, 28(1):1672-3317.
[29] 张磊, 吕金印, 贾少磊. 水分亏缺对小麦穗部光合特性及花前14C-同化物分配的影响. 作物学报, 2013, 39(8):1514-1519.
[30] 祁有玲, 张富仓, 李开峰, 等. 不同生育期水分亏缺及氮营养对冬小麦生长和产量的影响. 灌溉排水学报, 2009, 28(1):24-27.
[31] 李成龙, 吕金印, 高俊凤. 水分亏缺对小麦抽穗期穗轴维管束系统的影响. 中国农学通报, 2007, 23(1):111-114.
[32] 赵春江, 郭晓维, 李鸿祥, 等. 不同水分条件下小麦各类茎蘖小花发育进程. 华北农学报, 1998, 13(2):1-5.
doi: 10.3321/j.issn:1000-7091.1998.02.001
[33] Farooq M, Helen B, Jairo A P, et al. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 2011, 30(6):491-507.
doi: 10.1080/07352689.2011.615687
[34] Demotes-mainard S, Jeuffroy M H. Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crop Research, 2004, 87:221-233.
doi: 10.1016/j.fcr.2003.11.014
[35] Johnson M A, Harper J F, Palanivelu R. A fruitful journey: pollen tube navigation from germination to fertilization. Annual Review of Plant Biology, 2019, 70(1):809-837.
doi: 10.1146/arplant.2019.70.issue-1
[36] Sinha R, Fritschi F B, Zandalinas S I, et al. The impact of stress combination on reproductive processes in crops. Plant Science, 2021, 311:111007.
doi: 10.1016/j.plantsci.2021.111007
[37] Draeger T, Moore G. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2017, 130(9):1785-1800.
doi: 10.1007/s00122-017-2925-1 pmid: 28550436
[38] Higgins J D, Perry R M, Barakate A, et al. Spatiotemporal asymmetry of the meiotic program underlies the predominantly distal distribution of meiotic crossovers in barley. The Plant Cell, 2012, 24(10):4096-4109.
doi: 10.1105/tpc.112.102483 pmid: 23104831
[39] Phillips D, Jenkins G, Macaulay M, et al. The effect of temperature on the male and female recombination landscape of barley. New Phytologist, 2015, 208(2):421-429.
doi: 10.1111/nph.13548 pmid: 26255865
[40] Lloyd A, Morgan C, Franklin F C H, et al. Plasticity of meiotic recombination rates in response to temperature in Arabidopsis. Genetics, 2018, 208(4):1409-1420.
doi: 10.1534/genetics.117.300588 pmid: 29496746
[41] Fabian A, Safran E, Szabo-eitel G, et al. Stigma functionality and fertility are reduced by heat and drought co-stress in wheat. Frontiers in Plant Science, 2019, 10:1-18.
doi: 10.3389/fpls.2019.00001
[42] Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology, 2011, 62(1):437-460.
doi: 10.1146/arplant.2011.62.issue-1
[43] Shi J X, Cui M H, Yang L, et al. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science, 2015, 20(11):741-753.
doi: S1360-1385(15)00201-0 pmid: 26442683
[44] Hsieh K, Huang A H C. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. The Plant Cell, 2007, 19(2):582-596.
doi: 10.1105/tpc.106.049049
[45] Storme N D, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant,Cell and Environment, 2013, 37(1):1-18.
doi: 10.1111/pce.2014.37.issue-1
[46] Ku S, Yoon H, Suh H S, et al. Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta, 2003, 217(4):559-565.
doi: 10.1007/s00425-003-1030-7 pmid: 12692728
[47] Abiko M, Akibayashi K, Sakata T, et al. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 2005, 18(2):91-100.
doi: 10.1007/s00497-005-0004-2
[48] Guo C K, Yao L Y, You C J, et al. MID1 plays an important role in response to drought stress during reproductive development. The Plant Journal, 2016, 88(2):280-293.
doi: 10.1111/tpj.13250 pmid: 27337541
[49] Su Z, Ma X, Guo H H, et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. The Plant Cell, 2013, 25(10):3785-3807.
doi: 10.1105/tpc.113.115428 pmid: 24179129
[50] Onyemaobi I, Liu H, Siddiqu K H M, et al. Both male and female malfunction contributes to yield reduction under water stress during meiosis in bread wheat. Frontiers in Plant Science, 2017, 7:2071.
[51] Saini H S, Sedgley M, Aspinall D. Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Functional Plant Biology, 1983, 10(2):137-144.
doi: 10.1071/PP9830137
[52] Polowick P L, Sawhney V K. High temperature induced male and female sterility in canola (Brassica napus L.). Annals of Botany, 1988, 62(1):83-86.
doi: 10.1093/oxfordjournals.aob.a087639
[53] Snider J L, Oosterhuis D M, Skulmzan B W, et al. Heat stress- induced limitations to reproductive success in Gossypium hirsutum. Physiologia Plantarum, 2010, 137(2):125-138.
doi: 10.1111/ppl.2009.137.issue-2
[54] Djanaguiraman M, Perumal R, Jagadish S, et al. Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant,Cell and Environment, 2018, 41(5):1065-1082.
doi: 10.1111/pce.v41.5
[55] Oliver S N, Dennis E S, Dolferus R. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiology, 2007, 48(9):1319-1330.
doi: 10.1093/pcp/pcm100
[56] Giorno F, Wolters-Arts M, Mariani C, et al. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants, 2013, 2(3):489-506.
doi: 10.3390/plants2030489
[57] Porch T G, Jahn M. Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant,Cell and Environment, 2001, 24 (7):723-731.
doi: 10.1046/j.1365-3040.2001.00716.x
[58] Wang Y L, Wang L, Zhou J X, et al. Research progress on heat stress of rice at flowering stage. Rice Science, 2019, 26(1):1-10.
doi: 10.1016/j.rsci.2018.06.009
[59] Jagadish S V K, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58(7):1627-1635.
doi: 10.1093/jxb/erm003 pmid: 17431025
[60] Ding Y, Fromm M, Avramova Z. Multiple exposures to drought ʻtrainʼ transcriptional responses in Arabidopsis. Nature Communications, 2012, 3(1):1-9.
[61] Guo C K, Ge X C, Ma H. The rice osdil gene plays a role in drought tolerance at vegetative and reproductive stages. Plant Molecular Biology, 2013, 82:239-253.
doi: 10.1007/s11103-013-0057-9 pmid: 23686450
[62] Kaya H, Nakajima R, Iwano M, et al. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. The Plant Cell, 2014, 26(3):1069-1080.
doi: 10.1105/tpc.113.120642
[63] Zandalinas S I, Mittter, Balfagon, et al. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 2018, 162(1):2-12.
doi: 10.1111/ppl.2018.162.issue-1
[64] Goetz M, Guivarh H A, Hirsche J, et al. Metabolic control of tobacco pollination by sugars and invertases. Plant Physiology, 2017, 173(2):984-997.
doi: 10.1104/pp.16.01601 pmid: 27923989
[65] Koonjul P K, Minhas J S, Nunes C, et al. Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water stressed wheat. Journal of Experimental Botany, 2005, 56(409):179-190.
doi: 10.1093/jxb/eri018 pmid: 15533880
[66] Boyer J S, Mclaughlin J E. Functional reversion to identify controlling genes in multigenic responses: Analysis of floral abortion. Journal of Experimental Botany, 2006, 58:267-277.
doi: 10.1093/jxb/erl177
[67] Feng B, Zhang C, Chen T, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC Plant Biology, 2018, 18(1):1-16.
doi: 10.1186/s12870-017-1213-1
[68] Jegadeesan S, Beery A, Altahan L, et al. Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions. Plant Reproduction, 2018, 31(4):1-17.
doi: 10.1007/s00497-018-0330-9
[69] Zhang C X, Li G Y, Chen T T, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018, 11(1):1-12.
doi: 10.1186/s12284-017-0196-8
[70] Lizana X C, Riegel R, Gomez L D, et al. Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). Journal of Experimental Botany, 2010, 61(4):1147- 1157.
doi: 10.1093/jxb/erp380
[71] Nadaud I, Girousse C, Debiton C, et al. Proteomic and morphological analysis of early stages of wheat grain development. Proteomics, 2010, 10(16):2901-2910.
doi: 10.1002/pmic.200900792 pmid: 20641138
[72] Attila F, Jager K, Rakszegi M, et al. Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress. Plant Cell Reports, 2011, 30(4):551-563.
doi: 10.1007/s00299-010-0966-x pmid: 21246199
[73] Girousse C, Inchboard L, Deswarte J C, et al. How does post-flowering heat impact grain growth and its determining processes in wheat?. Journal of Experimental Botany, 2021, 72 (18):6596-6610.
doi: 10.1093/jxb/erab282 pmid: 34125876
[74] Liu Y H, Offler C E, Ruan Y L. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Frontiers in Plant Science, 2013, 4:1-12.
[75] Cheng W H, Taliercio E W, Chourey P S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. The Plant Cell, 1996, 8(6):971-983.
doi: 10.1105/tpc.8.6.971 pmid: 12239408
[76] Ober E S, Setter T L. Timing of kernel development in water stressed maize: water potentials and abscisic acid concentrations. Annals of Botany, 1990, 66(6):665-672.
doi: 10.1093/oxfordjournals.aob.a088081
[77] Setter T L, Flannigan B A. Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. Journal of Experimental Botany, 2001, 52(360):1401-1408.
pmid: 11457899
[78] Brugiere N, Jiao S P, Hantke S, et al. Cytokinin oxidase gene expression in maize is localized to the vasculature,and is induced by cytokinins,abscisic acid,and abiotic stress. Plant Physiology, 2003, 132(3):1228-1240.
doi: 10.1104/pp.102.017707
[79] Veselova S V, Farhutdinov R G, Veselov S Y, et al. The effect of root cooling on hormone content,leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). Journal of Plant Physiology, 2005, 162(1):21-26.
doi: 10.1016/j.jplph.2004.06.001
[80] Renu K C, Rao P S S, Maheswari M, et al. Effect of water deficit on accumulation of dry matter,carbon and nitrogen in the kernel of wheat genotypes differing in yield stability. Annals of Botany, 1994, 74:503-511.
doi: 10.1006/anbo.1994.1147
[81] Yang J C, Zhang J H, Wang Z Q, et al. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology, 2004, 135(3):1621- 1629.
pmid: 15235118
[82] Ababaei B, Chenu K. Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian wheatbelt. Agricultural and Forest Meteorology, 2020, 284:107889.
doi: 10.1016/j.agrformet.2019.107889
[83] Zhang B, Chenu K, Fernanda D M, et al. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium L.) varieties?. Global Change Biology, 2012, 18(9),2899-2914.
doi: 10.1111/gcb.2012.18.issue-9
[84] Dias A S, Lidon F C. Evaluation of grain filling rate and duration in bred and durum wheat,under heat stress after anthesis. Journal of Agronomy and Crop Science, 2009, 195 (2):137-147.
doi: 10.1111/jac.2009.195.issue-2
[85] Streck N A. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development and yield. Ciencia Rural, 2005, 35(3):730-740.
doi: 10.1590/S0103-84782005000300041
[86] Yin X, Guo W, Spiertz J H. Aquantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes. Field Crops Research, 2009, 114 (1):119-126.
doi: 10.1016/j.fcr.2009.07.013
[87] Wardlaw I F, Willenbrink J. Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytologist, 2000, 148(3):413- 422.
doi: 10.1046/j.1469-8137.2000.00777.x pmid: 33863022
[88] Sofield I, Evans L T, Cook M G, et al. Factors influencing the rate and duration of grain filling in wheat. Australian Journal of Plant Physiology, 1977, 4(5):785-797.
[89] Viswanathan C, Khanna-chopra R. Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability. Journal of Agronomy and Crop Science, 2001, 186(1):1-7.
doi: 10.1046/j.1439-037x.2001.00432.x
[90] Ning P, Yang L L, Li C J, et al. Post-silking carbon partitioning under nitrogen deficiency revealed sink limitation of grain yield in maize. Journal of Experimental Botany, 2018, 69(7):1707-1719.
doi: 10.1093/jxb/erx496 pmid: 29361032
[91] Ma Y, Baker R F. Magallanes-Lundback M, et al. Tie-dyed1 and sucrose export defective 1 act independently to promote carbohydrate export from maize leaves. Planta, 2008, 227(3):527-538.
doi: 10.1007/s00425-007-0636-6
[92] Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science, 1995, 35(3):827-831.
doi: 10.2135/cropsci1995.0011183X003500030032x
[93] Smith A M, Denyer K. Starch synthesis in developing pea embryos. New Phytologist, 1992, 122(1):21-33.
doi: 10.1111/j.1469-8137.1992.tb00049.x pmid: 33874037
[94] Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191(3):342-348.
[95] Hurkman W J, Mccue K F, Altenbach S B, et al. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, 164(3):873-881.
doi: 10.1016/S0168-9452(03)00076-1
[96] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regulation, 2001, 35(1):81-91.
doi: 10.1023/A:1013827600528
[97] Prakash P, Sharma-natu P, Ghildiyal M C. Effect of different temperature on starch synthase activity in excised grains of wheat cultivars. Indian Journal of Experimental Biology, 2004, 42(2):227-230.
pmid: 15282961
[98] Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Functional Plant Biology, 1994, 21(6):791-806.
doi: 10.1071/PP9940791
[99] Blum A, Klueva N, Nguten H T. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 2001, 117(2):117-123.
doi: 10.1023/A:1004083305905
[100] Fu J, Momclovi´c I, Clemente T E, et al. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Molecular Biology, 2008, 68(3):277-288.
doi: 10.1007/s11103-008-9369-6
[101] Dupont F M, Hurkman W J, Vensel W H, et al. Protein accumulation and composition in wheat grains: effects of mineral nutrients and high temperature. European Journal of Agronomy, 2006, 25(2):96-107.
doi: 10.1016/j.eja.2006.04.003
[102] Wang X L, Yan Y, Xu C C, et al. Mitigating heat impacts in maize (Zea mays L.) during the reproductive stage through biochar soil amendment. Agriculture,Ecosystems and Environment, 2021, 311:107321.
doi: 10.1016/j.agee.2021.107321
[103] 薛吉全, 张仁和, 马国胜, 等. 种植密度、氮肥和水分胁迫对玉米产量形成的影响. 作物学报, 2010, 36(6):1022-1029.
[104] Graham A W, McDonald G K. Effect of zinc on photosynthesis and yield of wheat under heat stress:Proceedings of the 10th Australian Agronomy Conference. Hobart: Australian Society of Agronomy, 2001.
[105] Hunt J R, Lilley J M, Trevaskis B, et al. Early sowing systems can boost Australian wheat yields despite recent climate change. Nature Climate Change, 2019, 9(3):244-247.
doi: 10.1038/s41558-019-0417-9
[106] Arnholdt-Schmitt B. Stress-induced cell reprogramming. A role for global genome regulation?. Plant Physiology, 2004, 136(1):2579-2586.
pmid: 15375206
[107] Conrath U, Beckers G J M, Flors V, et al. Priming: getting ready for battle. Molecular Plant-Microbe Interactions, 2006, 19(10):1062-1071.
doi: 10.1094/MPMI-19-1062 pmid: 17022170
[108] Wang X, Cai J, Jiang D, et al. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 2011, 168(6):585-593.
doi: 10.1016/j.jplph.2010.09.016 pmid: 21247658
[109] Newman G S, Arthur M A, Muller R N. Above- and belowground net primary production in a temperate mixed deciduous forest. Ecosystems, 2006, 9(3):317-329.
doi: 10.1007/s10021-006-0015-3
[1] Zhang Rong, Jiang Enxi, Chen Si, Yu Xurun, Chen Gang, Ran Liping, Xiong Fei. Study on the Grain Formation in Wheat Spike Regulated by Ethephon and 1-Methylcyclopropene [J]. Crops, 2023, 39(6): 101-107.
[2] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[3] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[4] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[5] Bai Jinghua, Jia Xiaomei, Wu Yanqing, Wang Yuekun, Song Weiyang, Liu Yinuo. Ability of DSE against Abiotic Stresses and Improving Drought Resistance of Solanum tuberosum [J]. Crops, 2023, 39(6): 150-159.
[6] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[7] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[8] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[9] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[10] Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223.
[11] Chen Dan, Xiong Furong, Wu Shaoyun, Bai Xiaodong, Zhou Guoyan, Wu Xiaoyang, Cai Qing. Molecular Detection and Geographic Distribution of Stripe Rust Resistance Gene Loci in Yunnan Wheat Landraces [J]. Crops, 2023, 39(6): 41-46.
[12] Ren Honglei, Zhang Fengyi, Han Xinchun, Hong Huilong, Zhu Xiao, Wang Guangjin, Qiu Lijuan. Drought Tolerance Evaluation of Soybean Mini Core Collections [J]. Crops, 2023, 39(6): 94-100.
[13] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[14] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[15] Wang Yifan, Ren Ning, Dong Xiangyang, Zhao Yanan, Ye Youliang, Wang Yang, Huang Yufang. Effects of Controlled-Release and Ordinary Urea on Wheat Yield, Nitrogen Absorption and Economic Benefit [J]. Crops, 2023, 39(5): 117-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!