Crops ›› 2025, Vol. 41 ›› Issue (1): 46-53.doi: 10.16035/j.issn.1001-7283.2025.01.006

;

Previous Articles     Next Articles

Breeding Strategy and Introgression Analysis on a Ultra-Early-Maturing Hybrid Rice

Lei Xiangliang1,2(), Fang Jun3, Yuan Xiaoquan2, Li Dan2, Liu Shijie2, Zhan Jingyun2, Huang Zhihua2, Peng Jinjian2, Jiang Shaomei4(), Zeng Xiaochun1()   

  1. 1College of Agronomy, Jiangxi Agricultural University, Nanchang 330000, Jiangxi, China
    2Fuzhou Institute of Agricultural Science, Fuzhou 344000, Jiangxi, China
    3Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
    4College of Statistics and Data Science, Jiangxi University of Finance and Economics, Nanchang 330000, Jiangxi, China
  • Received:2023-10-17 Revised:2023-11-20 Online:2025-02-15 Published:2025-02-12

Abstract:

This article proposes a new strategy, using local early rice varieties (parents) hybridized with japonica introgression lines, and has created ultra-early-maturing and high-yielding hybrid early rice (HER). This is the first report in HER for utilizing the heterosis genus between indica and japonica subspecies. Using Xiangling 628S (XL628S) and Zhongzao39 as improved parents, hybridized with the japonica rice introgression materials, two lines of male sterile line Z01S and restorer line R1102 were bred through systematic breeding methods. The results showed that, Z01S and R1102 exhibited early heading and strong temperature sensitivity under long day and short day conditions. In addition, the new combination CZY1102 (Z01S/R1102) showed strong tillering ability, high yield, excellent rice quality, good cold-tolerance, and early heading. Compared with Zhongzao39, its period of heading date was as short as 47-73 days, which was 6.40 days shorter in spring and 11.30 days shorter in autumn. The actual yield during the main season was 8187.60 kg/ha, which were not significantly reduced compared to Zhongzao39. The proportion of japonica genotypes in Z01S and R1102 were increased by 0.78% and 6.34%, respectively, compared to their original parents. This indicates that the breeding strategy is feasible, and the japonica introgression can effectively overcome physiological barriers among subspecies.

Key words: Early hybrid rice, Early heading, Japonica introgression, Subspecies, Breeding

Fig.1

Comparison of phenotypes between XL628S and Z01S (a)Single plant phenotype; (b) Main panicle shape."

Table 1

Comparison of agronomic traits between XL628S and Z01S in the summer of 2023"

农艺性状Agronomic trait XL628S Z01S
播始历期Days to flowering (d) 57.00±1.20 48.00±1.23**
株高Plant height (cm) 69.00±0.73 53.90±0.99**
分蘖数Tillers number 11.00±0.89 20.00±1.38**
穗粒数Grains per panicle 161.47±4.49 121.79±3.77**
剑叶长Length of flag leaf (cm) 28.94±1.20 20.98±0.57**
穗长Length of panicle (cm) 21.61±0.17 18.14±0.22**
千粒重1000-grain weight (g) 23.36±0.29 22.76±0.09
长宽比Length-width ratio 3.14±0.04 3.22±0.01

Fig.2

Comparison of heading date of sterile lines XL628S, Z01S, two restorer lines and F1 (a) Sowing on March 17, 2023; (b) Sowing on July 10, 2023; (c) Phenotypes of Z01S, R1102, and CZY1102 in field, CZY1102 heading six days earlier than R1102 (taken on June 12)."

Fig.3

Comparison of phenotype between early maturing restorer line R1102 and Zhongzao39 (a) Single plant; (b) R1102 field population; (c) Main panicle shape; (d) Rice appearance; (e) Grain shape."

Table 2

Comparison of agronomic traits between early maturing restorer line R1102 and Zhongzao39"

农艺性状Agronomic trait Zhongzao39 R1102
株高Plant height (cm) 94.10±0.73 80.06±1.06**
有效穗数Effective panicle number 8.30±0.42 9.03±0.63
穗粒数Grains per panicle 204.83±6.83 158.99±6.63**
结实率Seed-setting rate (%) 87.46±0.01 85.07±0.01
长宽比Length-width ratio 2.26±0.00 2.09±0.00**
千粒重1000-grain weight (g) 24.99±0.08 26.90±0.21**
理论产量Theoretical yield (kg/hm2) 9241.05 7912.50
理论产量增幅
Theoretical yield increase (%)

-14.37

Fig.4

Comparison of genotype between early maturing restorer line R1102 and Zhongzao39"

Table 3

Comparison of homozygosity ratio, genetic similarity and genomic identity of R1102 with Zhongzao39 %"

材料
Material
纯合度
Homozygosity ratio
遗传相似度
Genetic similarity
基因组相似度
Genomic identity
Zhongzao39 99.94
R1102 99.12 87.26 71.45

Table 4

Dates of sowing and transplanting of R1102 and Zhongzao39 during 2022-2023"

项目Item 2022HN 2023FZ01 2023FZ02 2023FZ03
日期Date 播种 11-20 03-17 06-11 07-10
移栽 12-06 04-15 06-28 07-28
秧龄Seedling age (d) 17 33 17 18

Fig.5

Comparison of heading stage between R1102 and Zhongzao39 at sowing dates"

Table 5

Differences analysis of agronomic traits between CZY1102 and Zhongzao39"

农艺性状Agronomic trait Zhongzao39 CZY1102
株高Plant height (cm) 94.10±0.72 79.35±0.39**
播始历期Days to flowering (d) 78.50±0.50 72.10±0.10**
有效穗数Efficient panicle number 8.30±0.42 12.80±0.65**
穗粒数Grains per panicle 204.84±6.83 133.88±5.78**
结实率Seed-setting rate (%) 87.46±0.01 85.23±0.02
千粒重1000-grain weight (g) 24.99±0.12 24.52±0.17*
长宽比Length-width ratio 2.24±0.00 2.71±0.01**
单株粒重
Weight of seeds per plant (g)
34.28±2.52
32.74±1.97
产量Yield (kg/hm2) 8571.15±39.82 8187.60±31.17
实际产量增幅
Actual yield increase (%)

-4.48

Fig.6

Difference analysis of heading date and rice quality between CZY1102 and Zhongzao39 in 2023 (a) Single plant; (b) Population in spring; (c) Difference of heading date between spring and autumn in 2023; (d)-(e) Population in autumn; (f) Grains."

Table 6

Quality analysis of grains from CZY1102, R1102 and Zhongzao39"

质量指标Quality index Zhongzao 39 CZY1102 R1102
糙米率Brown rice recovery (%) 80.92 81.35 82.20
精米率Head rice rate (%) 66.84 67.96 67.70
整精米率Perfect head rice rate (%) 62.23 60.55 61.50
米粒长Rice length (mm) 5.25 5.87 5.30
长宽比Length-width ratio 1.96 2.47 1.90
垩白粒率Chalky grain rate (%) 70.0 56.0 89.0
垩白度Chalkiness degree (%) 18.6 12.5 27.2
直链淀粉Amylose (%) 26.0 22.3 26.8
胶稠度Gel consistency (mm) 60.0 57.0 30.0
碱消值级
Level of alkali spreading value
4.5 5.0 6.6
透明度级Transparency level 2 1 3
水分Moisture (%) 12.30 12.47 12.20

Fig.7

SNP testing analysis of typical varieties (lines) indica and japonica rice"

Table 7

Classification of seven rice varieties (lines) by indica and japonica"

品种(系)
Variety (line)
总区段数
Total
区段数Section number 籼型比例
Indica rate (%)
粳型比例
Japonica rate (%)
籼型区Indica 粳型区Japonica 不能判断区Undeterminable
XL628S 1798 1281 212 305 71.25 11.79
Z01S 1798 1356 226 216 75.42 12.57
Zhongzao39 1798 1447 168 183 80.48 9.34
R1102 1798 1289 282 227 71.69 15.68
Nipponbare 1798 5 1781 12 0.28 99.05
Balilla 1798 0 1798 0 0.00 100.00
NJ11 1798 1545 104 149 85.93 5.78

Table 8

Difference analysis of chilling tolerance of four rice materials treated at 10 ℃ during seedling stage"

指标Index Zhongzao39 Z01S R1102 CZY1102
活苗率
Live seedlings
rate (%)
10.67±2.01 54.67±5.18** 28.00±1.67** 47.33±2.69**
[1] Xue W Y, Xing Y Z, Weng X Y, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6):761-767.
[2] Fujino K, Sekiguchi H. Mapping of QTLs conferring extremely early heading in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2005, 111(2):393-398.
pmid: 15940510
[3] Song Y, Shim J, Kinmonth-Schultz H, et al. Photoperiodic flowering: Time measurement mechanisms in leaves. Annual Review of Plant Biology, 2015, 66(1):441-464.
[4] Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 1997, 35:145-153.
pmid: 9291968
[5] Gao H, Zheng X M, Fei G L, et al. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genetics, 2013, 9(2):1003281.
[6] Zhou S R, Zhu S S, Cui S, et al. Transcriptional and post-transcriptional regulation of heading date in rice. New Phytologist, 2021, 230(3):943-956.
doi: 10.1111/nph.17158 pmid: 33341945
[7] 何云丽, 叶乃忠, 郝明, 等. 多环境下早籼稻重组自交系群体的抽穗期QTL分析. 中国水稻科学, 2013, 27(4):389-397.
[8] 邓晓建, 周开达, 李仁端, 等. 水稻品种生育期的遗传和基因定位. 四川农业大学学报, 2001, 19(2):172-178.
[9] 中华人民共和国农业农村部. 食用稻品种品质:NY/T 593-2021. 北京:中国标准出版社,2021.
[10] 邓伟, 吕莹, 董阳均, 等. 云南水稻种质资源的遗传多样性分析. 植物遗传资源学报, 2023, 24(3):624-635.
[11] 杨行海, 韦宇, 夏秀忠, 等. 基于40K基因芯片的326份水稻品种遗传多样性与重要病虫抗性基因鉴定. 分子植物育种, 2022, 20(12):3974-3987.
[12] 蒋向辉, 余显权, 赵福胜. 贵州地方耐冷水稻品种芽期和苗期耐冷性的相关性研究. 西南农业学报, 2004, 17(2):177-180.
[13] 桂云波, 方体秀, 李垠, 等. 特早熟早稻新品种化感2205的选育经过及栽培技术. 现代农业科技, 2020(9):35-37.
[14] 丁国皊, 谢晶, 朱迎婷, 等. 特早熟优质早稻南陵早2号的选育与应用. 安徽农学通报, 2023, 29(6):44-47,59.
[15] 肖叶青, 陈大洲, 邬文昌, 等. 优质早熟早籼不育系03A选育. 江西农业学报, 2007, 19(1):6-9.
[16] 邬文昌, 刘平洲, 肖叶青, 等. 优质早熟早籼不育系03A高产繁殖技术. 江西农业学报, 2007, 19(8):29-30.
[17] 国家统计局. 国家统计局关于2024年早稻产量数据公告. (2024-08-23) [2024-10-28]. https://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202408/t20240823-1956083.html.
[18] 曹立勇, 申宗坦. 籼粳杂交稻早熟性的研究. 中国水稻科学, 1997, 11(3):187-189.
[19] 李和标, 邹江石. 水稻籼粳亚种间F1生育期超亲表现与遗传分析. 江苏农业学报, 1992, 8(1):7-12.
[20] Yang J Y, Zhao X B, Cheng K, et al. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science, 2012, 337(6100):1336-1340.
doi: 10.1126/science.1223702 pmid: 22984070
[21] Long Y M, Zhao L F, Niu B X, et al. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(48):18871-18876.
[22] Yu X W, Zhao Z, Zheng X, et al. A selfish genetic element confers non-Mendelian inheritance in rice. Science, 2018, 360 (6393):1130-1132.
doi: 10.1126/science.aar4279 pmid: 29880691
[23] Wu W X, Zeng X M, Lu G W, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (8):2775-2780.
[24] Fang J, Zhang F T, Wang H R, et al. Ef-cd locus shortens rice maturity duration without yield penalty. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(37):18717-18722.
[25] 邓晓建, 周开达, 李仁端, 等. 水稻完全显性早熟性的发现和基因定位. 中国农业科学, 2001, 34(3):233-239.
[26] 董春林, 孙业盈, 王平荣, 等. 水稻显性早熟基因Ef-cd的基因效应分析及育种应用潜力的初步评价. 作物学报, 2007, 33(3):384-388.
[1] Chen Xingyu, Sun Xueying, Zhang Li, Sun Jiangrong, Guo Jiangyu. Breeding and Application Value of Purple Leaf Red Flower Common Buckwheat “Youtian Purple Red” [J]. Crops, 2025, 41(1): 260-262.
[2] Xiang Dabing, Ye Xueling, Fan Yu, Liu Changying, Wan Yan, Wu Qi, Wu Xiaoyong, Peng Lianxin, Zhao Gang, Zou Liang. Breeding and Cultivation Technology of New Tartary Buckwheat Variety Chengku No.2 [J]. Crops, 2024, 40(6): 249-253.
[3] Yan Jinlong, Zhang Dongxu, Feng Liyun, Wu Zhiyuan, Li Yijuan, Zhang Junling. Identification of Disease Resistance-Related Genes of Wheat Cultivars (Lines) in Southeastern Shanxi by KASP Assays [J]. Crops, 2024, 40(4): 90-95.
[4] Chen Luo, Zhu Wen, Li Wenhui, Zhao Junliang, Zhou Lingyan, Yang Wu. Advances in Research and Application of Rice Bacterial Blight Resistance Genes [J]. Crops, 2024, 40(3): 1-7.
[5] Liu Xiaohong, Hu Zuo, Song Weiji, Li Huailong, Li Zhou. Breeding and High-Yield Cultivation Techniques of Tartary Buckwheat Variety “Zhaoku 2” [J]. Crops, 2024, 40(3): 265-268.
[6] Du Ming, Wang Ahong, Feng Qi, Fang Yu. Development and Challenge of Crop Breeding by Design System in China [J]. Crops, 2024, 40(1): 1-7.
[7] Lü Zengshuai, Dong Hongye, Wang Peng, Duan Wei, Liu Shengli, Liu Yantao. Progress in Mechanism of Herbicide Resistance and Breeding of Sunflower [J]. Crops, 2024, 40(1): 16-22.
[8] Pei Chunling, Gu Yongzhe, Fu Jiaqi, Chao Shouwei, Lu Qian, Qiu Lijuan. Study on the Rapid Generation-Adding Technology of Huang-Huai-Hai Summer Soybean in Hainan [J]. Crops, 2023, 39(6): 35-40.
[9] Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70.
[10] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[11] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
[12] Li Ruiqi, Bi Haoran, Jiang Gonghao, Duan Haiyan. Convergence Improvement of Aroma Genes and Rice Blast Resistance Genes in Kongyu 131 [J]. Crops, 2022, 38(5): 22-26.
[13] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[14] Guo Shuchun, Miao Hongmei, Li Suping, Yu Haifeng, Nie Hui, Mu Yingnan, Wen Xinyu, Liang Chen, Zhang Haibin, Shao Ying. Research Advances in the Breeding Study of Sunflower Resistance to Orobanche [J]. Crops, 2022, 38(3): 27-32.
[15] Zhao Yanfei, Wang Jiyong. Germplasm Resource Protection and Breeding Innovation Status and Development Countermeasures——Taking Hunan and Hainan Provinces as Examples [J]. Crops, 2022, 38(2): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .