作物杂志,2021, 第2期: 62–70 doi: 10.16035/j.issn.1001-7283.2021.02.009

所属专题: 玉米专题

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

玉米叶片“源”的高温胁迫阈值研究

张学鹏1(), 李腾1, 王彪1, 刘晴1, 刘涵瑜1, 陶志强2(), 隋鹏1()   

  1. 1中国农业大学农学院,100193,北京
    2中国农业科学院作物科学研究所/农业农村部作物生理生态重点实验室,100081,北京
  • 收稿日期:2020-11-11 修回日期:2020-12-17 出版日期:2021-04-15 发布日期:2021-04-16
  • 通讯作者: 陶志强,隋鹏
  • 作者简介:张学鹏,主要从事玉米逆境胁迫研究,E-mail: 13001297977@163.com
  • 基金资助:
    国家自然科学基金(31701387);国家自然科学基金(32071978)

Study on High Temperature Stress Threshold of Maize Leaves

Zhang Xuepeng1(), Li Teng1, Wang Biao1, Liu Qing1, Liu Hanyu1, Tao Zhiqiang2(), Sui Peng1()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2020-11-11 Revised:2020-12-17 Online:2021-04-15 Published:2021-04-16
  • Contact: Tao Zhiqiang,Sui Peng

摘要:

为了明确玉米叶片“源”的高温胁迫温度阈值,采用盆栽试验,利用可精准控温(模拟大气温度变化)的人工气候室,以日最高温32℃为对照,分别设置日最高温34℃、36℃和38℃ 3个处理,于玉米拔节期进行持续10d的温度控制试验,比较叶片光合作用光反应和暗反应阶段对不同高温的响应,以及叶片气孔和叶绿体超微结构的变化。光反应阶段,38℃处理下的光系统Ⅱ最大光化学量子产量(Fv/Fm)和实际光化学量子产量Y(Ⅱ)与其他处理相比均显著降低,但胁迫解除后均恢复至正常水平,而其他3个处理无显著性差异;暗反应阶段,与对照相比,36℃和38℃处理的叶片净光合速率(Pn)均显著降低,胞间CO2浓度(Ci)均显著升高,且38℃处理在胁迫解除后Pn未能恢复。透射电镜结果显示,在36℃和38℃处理下,叶绿体结构逐渐紊乱降解,脂质球体含量增加,淀粉粒合成减少。综上可知,对于玉米叶片“源”,日最高温的胁迫阈值是36℃,阈值附近的高温胁迫主要是限制光合作用的暗反应阶段。

关键词: 玉米, 高温胁迫, 阈值, 叶片, 光合作用, 叶绿体

Abstract:

The present research aimed to find out the high temperature stress threshold of maize leaves. Using an artificial climate chamber with accurate temperature control, a pot experiment was designed. The daily maximum temperature of 32°C was used as the control, and three different daily maximum temperature treatments (34°C, 36°C, and 38°C) were set. The high temperature stress treatments were lasting ten days at the jointing stage. The response of photosynthetic photoreaction and dark reaction phases of leaves at different temperatures, and the ultrastructure of stomata and chloroplasts of leaves were analyzed. At the photoreaction phase, the maximum light efficiency of photosystem Ⅱ and the actual photochemical efficiency treatment were significantly reduced under the treatment of 38°C, and both indicators returned to normal levels after releasing of the high temperature stress. But the other three treatments showed no significant difference. At the dark reaction phase, the net photosynthetic rates at 36°C and 38°C were significantly lower than that of the control, and the intercellular CO2 concentration increased significantly, and the net photosynthetic rate at 38°C could not return to normal level after releasing of high temperature stress. The results of the transmission electron microscope showed that under the treatment of 36°C and 38°C, the chloroplast structure gradually disordered and degraded, the content of the lipid sphere increased, and the synthesis of starch decreased. Therefore, for the leaf of maize, the threshold of high daily maximum temperature stress was 36°C. In addition, high temperature stress near the threshold mainly restricts the dark reaction stage of photosynthesis.

Key words: Maize, High temperature stress, Threshold, Leaf, Photosynthesis, Chloroplast

表1

人工气候室8∶00-18∶00温度设置

日最高温Daily maximum temperature 8∶00 9∶00 10∶00 11∶00 12∶00 13∶00 14∶00 15∶00 16∶00 17∶00 18∶00
32 27 28 29 30 31 32 32 32 31 30 28
34 29 30 31 32 33 34 34 34 33 32 30
36 31 32 33 34 35 36 36 36 35 34 32
38 33 34 35 36 37 38 38 38 37 36 34

图1

人工气候室不同处理的24h气温变化

图2

不同温度处理下玉米叶片叶绿素荧光参数变化 P:处理前;1h:处理1d日最高温持续1h处;1d、3d、6d、10d:处理1、3、6、10d日最高温持续2h处;17d:处理结束后7d;差异显著性水平为P<0.05。下同

图3

不同温度处理下叶片光合作用参数变化

图4

不同温度处理对玉米叶片下表皮及气孔结构的影响

图5

不同温度处理对玉米叶片叶肉细胞叶绿体的影响 Ch:叶绿体;M:线粒体;Cn:细胞核;Sg:淀粉粒;P:脂质球体;L:溶酶体;St:海绵组织;Pt:栅栏组织;Bs:维管束鞘

图6

不同温度处理对玉米叶片叶肉细胞叶绿体的影响 Cw:细胞壁;Ch:叶绿体;M:线粒体;Th:类囊体片层;Sg:淀粉粒;P:脂质球体

[1] Nations FAO. FAO Statistical Pocketbook 2015:World Food and Agriculture:Rome, 2015.
[2] IPCC. Climate Change 2014. Cambridge and New York: Cambridge University Press, 2014.
[3] Schlenker W, Roberts M J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(37):15594-15598.
[4] Lobell D B, Baenziger M, Magorokosho C, et al. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 2011,1(1):42-45.
[5] Hawkins E, Fricker T E, Challinor A J, et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Global Change Biology, 2013,19(3):937-947.
[6] 赵鸿, 王润元, 尚艳, 等. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望. 干旱气象, 2016,34(1):1-12.
[7] 于振文. 作物栽培学各论. 中国农业出版社, 2003.
[8] Zhang J H, Huang W D, Liu Y P, et al. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology, 2005,47(8):959-970.
[9] Camejo D, Rodriguez P, Morales A, et al. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 2005,162(3):281-289.
[10] Faria T, GarciaPlazaola J I, Abadía A, et al. Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer. Tree Physiology, 1996,16(1/2):115-123.
[11] Stroch M, Vrabl D, Podolinska J, et al. Acclimation of Norway spruce photosynthetic apparatus to the combined effect of high irradiance and temperature. Journal of Plant Physiology, 2010,167(8):597-605.
[12] Li M F, Ji L S, Yang X H, et al. The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSⅡ during chilling stress. Plant Cell Reports, 2012,31(11):1969-1979.
[13] Peng H T, Li Y X, Zhang C W, et al. Chloroplast elongation factor BcEF-Tu responds to turnip mosaic virus infection and heat stress in non-heading Chinese cabbage. Biologia Plantarum, 2014,58(3):561-566.
[14] Way D A, Sage R F. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) BSP]. Plant Cell and Environment, 2008,31(9):1250-1262.
[15] 郝召君. 芍药对高温胁迫的响应及其化学调控机制研究. 扬州:扬州大学, 2017.
[16] Sharkey T D, Zhang R. High temperature effects on electron and proton circuits of photosynthesis. Journal of Integrative Plant Biology, 2010,52(8):712-722.
[17] 赵薇, 李贞, 王谦, 等. 冬小麦灌浆期旗叶光曲线及叶绿素荧光参数研究. 气象与环境科学, 2017,40(1):64-72.
[18] 董轲. 低温光胁迫对植物光系统的伤害及缓解机理研究. 济南:山东师范大学, 2017.
[19] 李新国. 低温弱光条件下喜温植物PSI和PSII的光抑制及其相互关系. 泰安:山东农业大学, 2003.
[20] 赵龙飞, 李潮海, 刘天学, 等. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012,45(23):4947-4958.
[21] 曲明南. CO2升高和短期高温胁迫对玉米幼苗生理生化指标的影响. 沈阳:沈阳农业大学, 2013.
[22] 路涛. 亚高温强光胁迫下番茄幼苗光抑制及光保护机制研究. 沈阳:沈阳农业大学, 2016.
[23] 黄纯倩, 朱晓义, 张亮, 等. 干旱和高温对油菜叶片光合作用和叶绿素荧光特性的影响. 中国油料作物学报, 2017,39(3):342-350.
[24] 季浩. 不同生育期及高温对玉米和棉花叶片叶绿素荧光参数的影响研究. 南京:南京农业大学, 2017.
[25] 孙胜楠, 王强, 孙晨晨, 等. 黄瓜幼苗光合作用对高温胁迫的响应与适应. 应用生态学报, 2017,28(5):1603-1610.
[26] 高冠龙, 冯起, 张小由, 等. 植物叶片光合作用的气孔与非气孔限制研究综述. 干旱区研究, 2018,35(4):929-937.
[27] Kanechi M, Uchida N, Yasuda T, et al. Non-stomatal inhibition associated with inactivation of Rubisco in dehydrated coffee leaves under unshaded and shaded conditions. Plant and Cell Physiology, 1996,37(4):455-460.
[28] Wise R R, Olson A J, Schrader S M, et al. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell and Environment, 2004,27(6):717-724.
[29] 王德权. 持绿型高粱、玉米对干旱胁迫响应的生理机制比较研究. 沈阳:沈阳农业大学, 2012.
[30] 张华, 翁梦苓, 梁志敏, 等. 烟草腺毛发育过程中叶绿体形态学研究. 西北植物学报, 2008(8):1592-1595.
[31] 时向东, 方圆, 杨双剑, 等. 烤烟叶片发育过程中的组织学和细胞学研究. 烟草科技, 2009(7):48-52.
[32] 时向东, 焦枫, 范豪杰, 等. 烤烟叶片发育过程中栅栏细胞超微结构的变化. 烟草科技, 2010(5):46-47.
[33] 张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控. 北京:中国农业科学院, 2018.
[34] Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3,C4,and CAM plants:temperature acclimation and temperature adaptation. Photosynthesis Research, 2014,119(1/2):101-117.
[1] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[2] 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193–203
[3] 冯勇, 侯旭光, 薛春雷, 张来厚, 宋国栋, 苏敏莉, 傅晓华, 孙宇燕. 内蒙古玉米品种适宜生态区划分[J]. 作物杂志, 2024, (1): 23–30
[4] 王海涛, 任春梅, 董岩, 李硕, 程兆榜, 季英华. 江苏淮安市高粱上玉米黄花叶病毒的分子检测与鉴定[J]. 作物杂志, 2024, (1): 233–238
[5] 马娟, 黄璐, 宇婷, 郭国俊, 朱卫红, 刘京宝. 玉米穗粗一般配合力多位点全基因组关联分析和基因组预测[J]. 作物杂志, 2024, (1): 31–39
[6] 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024, (1): 8–15
[7] 毋莹, 胡蝶, 李婷, 段乾元, 韦宁宁, 张兴华, 徐淑兔, 薛吉全. 玉米WRKY转录因子IIc亚家族分析及其在干旱胁迫下的表达分析[J]. 作物杂志, 2024, (1): 80–89
[8] 金玉, 郭新宇, 张颖, 李大壮, 王璟璐. 玉米叶片气孔表型鉴定及研究进展[J]. 作物杂志, 2023, (6): 1–10
[9] 吴琦, 明博, 高尚, 杨宏业, 张川, 初振东, 李少昆. 东北冷凉区玉米籽粒脱水模型构建策略研究[J]. 作物杂志, 2023, (6): 108–113
[10] 梁忠宇, 薛军, 张国强, 明博, 沈东萍, 方梁, 周林立, 张玉芹, 杨恒山, 王克如, 李少昆. 水肥一体化施磷量对玉米抗倒伏能力的影响[J]. 作物杂志, 2023, (6): 190–194
[11] 刘慧, 龙学毅, 焦岩, 王丽红. 生物炭与磷肥配施对水稻生长发育及产量的影响[J]. 作物杂志, 2023, (5): 238–248
[12] 曹庆军, 李刚, 杨浩, 娄玉勇, 杨粉团, 孔凡丽, 李辛琲, 赵新凯, 姜晓莉. 不同耕作方式对春玉米种床质量的影响及其与幼苗群体建成和产量的关系[J]. 作物杂志, 2023, (5): 249–254
[13] 于乐, 李林, 黄红娟, 黄兆峰, 朱文达, 魏守辉. 湖北省玉米田杂草种类组成及群落特征[J]. 作物杂志, 2023, (5): 272–279
[14] 杨宗莹, 肖贵, 张红伟. 利用玉米F1群体进行玉米全株鲜重的全基因组预测分析[J]. 作物杂志, 2023, (5): 43–48
[15] 曲海涛, 李忠南, 王越人, 马艺文, 相洋, 邬生辉, 谭倬, 王纯, 魏强, 罗瑶, 李光发. 玉米百粒重遗传育种效应研究[J]. 作物杂志, 2023, (5): 66–70
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!