作物杂志,2025, 第4期: 206–213 doi: 10.16035/j.issn.1001-7283.2025.04.026

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

水分胁迫下CaCl2对亚麻幼苗生长及生理的影响

褚霈宇1(), 韩喜财1, 王盼1, 李多2, 朱浩1, 金喜军3, 宋鑫玲1, 曹洪勋1, 夏尊民1(), 王晓楠1()   

  1. 1黑龙江省科学院大庆分院,163319,黑龙江大庆
    2大庆农业技术推广中心,163411,黑龙江大庆
    3黑龙江八一农垦大学农学院,163000,黑龙江大庆
  • 收稿日期:2025-02-20 修回日期:2025-04-22 出版日期:2025-08-15 发布日期:2025-08-12
  • 通讯作者: 夏尊民,主要从事亚麻育种研究,E-mail:xiazunmin68@126.com;王晓楠为共同通信作者,主要从事麻类作物遗传育种、栽培及分子生物学研究,E-mail:wxn_fern@163.com
  • 作者简介:褚霈宇,主要从事麻类作物逆境育种研究,E-mail:chupeiyv@163.com
  • 基金资助:
    黑龙江省科学院青年创新基金项目(CXMS2024DQ04);黑龙江省麻类作物(工业)现代产业技术协同创新技术体系(SCXTI(MLGY)2024);黑龙江省科学院科学研究基金项目(KY2022DQ02)

Effects of CaCl2 on Growth and Physiology of Flax Seedlings Under Water Stress

Chu Peiyu1(), Han Xicai1, Wang Pan1, Li Duo2, Zhu Hao1, Jin Xijun3, Song Xinling1, Cao Hongxun1, Xia Zunmin1(), Wang Xiaonan1()   

  1. 1Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163319, Heilongjiang, China
    2Daqing Agricultural Technology Extension Center, Daqing 163411, Heilongjiang, China
    3College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163000, Heilongjiang, China
  • Received:2025-02-20 Revised:2025-04-22 Online:2025-08-15 Published:2025-08-12

摘要: 为探究水分胁迫下外源CaCl2对亚麻幼苗生长及生理的影响,设置0(CK)、1(Ca1)、3(Ca3)、6(Ca6)、12(Ca12)和24 mmol/L(Ca24)等6个CaCl2浓度处理,采用盆栽控水法,于枞形期进行根施处理。结果表明,与CK相比,Ca6与Ca12处理对胁迫下亚麻各形态参数增加的范围是27.10%~108.44%(干旱)和15.13%~66.29%(水淹);Ca6与Ca12处理在胁迫结束时均使亚麻的超氧化物歧化酶和过氧化物酶活性降低,而在干旱胁迫下增加了苯丙氨酸解氨酶(PAL)和过氧化氢酶(CAT)活性,在水淹胁迫下增加了CAT活性和降低了PAL活性;Ca6和Ca12处理显著降低了干旱胁迫与水淹胁迫下的超氧阴离子、丙二醛和过氧化氢含量,降低范围分别为24.14%~98.18%(干旱)和25.16%~76.17%(水淹)。变异系数分析表明,Ca6处理的综合影响最大,分别为20.07(干旱)和25.11(水淹)。隶属函数分析表明,Ca6处理的平均得分最高,分别为0.75(干旱)和0.63(水淹)。综上,6~12 mmol/L CaCl2预处理亚麻幼苗可有效缓解水分胁迫对其形态和生理的不利影响,其中6 mmol/L的CaCl2是最适预处理浓度。同时,本研究也证明了CaCl2缓解干旱和水淹胁迫的最适浓度是同一浓度。

关键词: 氯化钙, 水分胁迫, 亚麻幼苗, 抗性生理, 形态

Abstract:

In order to investigate the effects of exogenous CaCl2 on the growth and physiology of flax seedlings under water stress, there are six different CaCl2 concentrations were set up, including 0 (CK), 1 (Ca1), 3 (Ca3), 6 (Ca6), 12 (Ca12) and 24 mmol/L (Ca24). The pot water control method was adopted and the root application treatment was carried out at the fir stage. The results showed that, compared with CK, the ranges of increase in various morphological parameters of flax under stress by Ca6 and Ca12 treatments were 27.10%-108.44% (drought) and 15.13%-66.29% (waterlogging). Both Ca6 and Ca12 treatments reduced the superoxide dismutase and peroxidase activities of flax at the end of stress, while increased the phenylalnine ammonialyase and catalase (CAT) activities under drought stress and increased the CAT activity and reducing the PAL activity under waterlogging stress. Compared with CK, Ca6 and Ca12 treatments significantly reduced the contents of superoxide anion, malondialdehyde and hydrogen peroxide under drought stress and waterlogging stress, with the reduction ranges being 24.14%-98.18% (drought) and 25.16%-76.17% (waterlogging), respectively. The coefficient of variation analysis showed that the combined effects of Ca6 treatment were 20.07 (drought) and 25.11 (water flooding), respectively. Membership function analysis showed that the average scores of Ca6 treatment were the highest, 0.75 (drought) and 0.63 (water flooding), respectively. In conclusion, 6 and 12 mmol/L CaCl2 pretreatment of flax seedlings can effectively alleviate the adverse effects of water stress on the morphology and physiology of flax seedlings, and 6 mmol/L CaCl2 is the most suitable concentration for pretreatment. At the same time, this study also proved that the optimal concentration of CaCl2 to alleviate drought and flooding stress is the same concentration.

Key words: CaCl2, Water stress, Flax seedling, Resistance physiology, Morphology

图1

CaCl2对干旱和水淹胁迫后亚麻幼苗形态的影响

图2

CaCl2对水分胁迫下亚麻幼苗地上部和地下部鲜重的影响 不同小写字母表示处理间存在显著性差异(P < 0.05),下同。

表1

CaCl2对水分胁迫下亚麻幼苗形态建成指标的影响

处理
Treatment
干旱胁迫Drought stress 水淹胁迫Water flooding stress
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
根粗
Root diameter
(mm)
叶片数
Leaf
number
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
根粗
Root diameter
(mm)
叶片数
Leaf
number
CK 10.70±0.14d 0.84±0.02c 0.94±0.01c 20.10±0.35c 15.20±0.21b 1.10±0.02a 1.26±0.03b 32.40±0.48c
Ca1 11.80±0.22c 0.92±0.02bc 1.01±0.02bc 23.90±0.72b 15.30±0.18b 1.03±0.02ab 1.21±0.04b 32.10±0.47c
Ca3 11.90±0.21c 1.00±0.02b 1.07±0.02b 23.70±0.44b 17.00±0.14a 1.00±0.02ab 1.31±0.04ab 36.00±0.54b
Ca6 13.30±0.12ab 1.06±0.03a 1.09±0.01b 27.80±0.42a 16.90±0.13a 0.94±0.02b 1.32±0.05ab 38.70±0.76a
Ca12 13.60±0.22a 1.10±0.02a 1.09±0.02b 27.50±0.80a 17.50±0.37a 0.96±0.02ab 1.46±0.05a 36.00±0.43b
Ca24 12.60±0.22b 0.99±0.02b 1.24±0.02a 24.30±0.67b 17.00±0.18a 0.97±0.02ab 1.18±0.03b 36.30±0.33b

表2

CaCl2对干旱和水淹胁迫后亚麻幼苗抗性生理酶活性的影响

处理
Treatment
干旱胁迫Drought stress 水淹胁迫Water flooding stress
SOD
(U/g FW)
POD
[U/(g·min) FW]
CAT
[U/(g·min) FW]
PAL
[mg/(g·h) FW]
SOD
(U/g FW)
POD
[U/(g·min) FW]
CAT
[U/(g·min) FW]
PAL
[mg/(g·h) FW]
CK 99.37±1.33a 824.41±7.27a 137.37±26.60bc 11.85±0.96c 96.70±4.79a 1100.05±43.70a 32.15±3.68c 25.00±1.01a
Ca1 80.63±8.97ab 795.65±67.90ab 129.05±12.70bc 19.93±1.04b 74.27±1.47b 1077.93±43.20a 132.89±8.16b 21.65±1.76ab
Ca3 61.51±3.16b 558.39±47.90c 151.39±7.09ab 19.74±1.00b 50.03±4.18c 948.44±37.00ab 138.30±1.28b 19.24±4.13ab
Ca6 67.27±2.42b 568.04±3.49c 162.94±35.30ab 26.90±0.51a 28.31±2.36d 672.47±35.40c 226.23±33.30a 18.94±1.66b
Ca12 62.89±2.57b 672.39±25.60ab 291.60±62.10a 24.82±1.00a 54.32±1.77c 663.42±36.10c 146.96±16.70b 18.64±0.79b
Ca24 72.91±2.64b 614.46±40.70bc 50.93±5.03c 19.56±0.50b 74.91±5.95b 878.43±40.40b 47.33±12.50c 20.98±1.59ab

图3

CaCl2对水分胁迫下亚麻膜脂过氧化物质的影响

图4

CaCl2对水分胁迫下亚麻幼苗形态指标及生理指标综合分析 (a) CaCl2浓度与形态指标和生理指标间的变异系数,(b) 形态指标与生理指标间的相关关系。TFW:总鲜重,FWA:地上部鲜重,FWU:地下部鲜重,PH:株高,LN:叶片数,SD:茎粗,RD:根粗。下同。

图5

CaCl2对水分胁迫下亚麻幼苗形态指标及生理指标隶属函数分析

[1] Zhao Q, Li S Y, Wang F, et al. Transcriptome analysis and physiological response to heat and cold stress in flax (Linum usitatissimum L) at the seedling stage. Environmental and Experimental Botany, 2025, 229:106076.
[2] 谭金芳. 作物施肥原理与技术. 北京: 中国农业大学出版社, 2021.
[3] Muhammad S H, Mahantesh M K, Khalil-Ur-Rehman M, et al. Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis. Plant Physiology and Biochemistry, 2017, 121:187-195.
doi: S0981-9428(17)30361-3 pmid: 29127881
[4] Mahnaz A, Pooyan M, Tahereh N, et al. Effect of different primings on germination and growth parameters of rice (Oryza sativa) seeds during drought stress,as compared with silver nanoparticles. Iranian Journal of Seed Research, 2018, 4(2):121-131.
[5] Zhu Z H, Sami A, Xu Q Q, et al. Effects of seed priming treatments on the germination and development of two rapeseed (Brassica napus L.) varieties under the co-influence of low temperature and drought. PLoS ONE, 2021, 16(9):e0257236.
[6] 苏芸芸, 付菲菲, 欧晓彬. 外源钙对干旱胁迫下桔梗幼苗生理特性和药用品质的影响. 西北植物学报, 2024, 44(4):551-561.
[7] 郑云海. 氯化钙对淹水胁迫下夏玉米生长的调控效应. 郑州: 河南农业大学, 2021.
[8] 李波, 刘畅, 李红, 等. 外源氯化钙对‘龙牧807’苜蓿幼苗干旱缓解效应分析. 草地学报, 2020, 28(4):990-997.
doi: 10.11733/j.issn.1007-0435.2020.04.016
[9] 李小玲, 华智锐, 何娇娇. 干旱条件下外源钙对商洛黄芩生理特性的影响. 江西农业学报, 2019, 31(4):31-35.
[10] 刘卫星, 张枫叶, 张军, 等. CaCl2浸种对苗期干旱胁迫下花生生长、生理及产量的影响. 山东农业科学, 2022, 54(3):49-55.
[11] 肖召杰, 郑东方, 杨秋月, 等. 不同CaCl2处理对干旱胁迫下花生幼苗生长及生理特性的影响. 陕西农业科学, 2024, 70(8):13-17.
[12] 李盼盼. 水淹胁迫下过氧化钙对玉米苗期生理生化特性的影响. 泰安: 山东农业大学, 2022.
[13] 张汉林. 外源氯化钙和硝酸钙对渍水胁迫下紫花苜蓿生长和生理特性的影响研究. 扬州: 扬州大学, 2021.
[14] 邓欣, 陈信波, 龙松华, 等. 水分胁迫对亚麻苗期生理特性及干物质积累的影响. 中国油料作物学报, 2015, 37(6):846-851.
doi: 10.7505/j.issn.1007-9084.2015.06.016
[15] 蒋虹, 张健, 王景明, 等. 《植物生理学实验指导》(第5版)中的几个不足之处. 植物生理学报, 2020, 56(1):11-15.
[16] 施海涛. 植物逆境生理学实验指导. 北京: 科学出版社, 2016.
[17] 苏小雨, 高桐梅, 张鹏钰, 等. 基于主成分分析及隶属函数法对芝麻苗期耐热性综合评价. 作物杂志, 2023(4):52-59.
[18] 陈德华. 作物栽培学研究实验法. 北京: 科学出版社, 2018.
[19] 何敏敏, 王堽, 耿贵. 钙营养对甜菜幼苗生长和表观光合作用的影响. 黑龙江大学自然科学学报, 2023, 40(3):325-331,379.
[20] 赵海洋, 李晓秀, 王玉祥, 等. 氯化钙对干旱胁迫下金莲花幼苗形态特征的影响. 农业科技通讯, 2018(7):189-193.
[21] 范小玉, 陈雷, 刘卫星, 等. 氯化钙浸种对干旱胁迫下花生种子萌发及幼苗生理特性的影响. 江苏农业科学, 2022, 50(8):101-105.
[22] Zhang J, Cheng K, Ma B J, et al. CaCl2 promotes the cross adaptation of Reaumuria trigyna to salt and drought by regulating Na+, ROS accumulation and programmed cell death. Plant Physiology and Biochemistry, 2023, 195:214-227.
doi: 10.1016/j.plaphy.2023.01.001 pmid: 36641945
[23] Shah W, Zaman N, Ullah S, et al. Calcium chloride enhances growth and physio-biochemical performance of barley (Hordeum vulgare L.) under drought-induced stress regimes: a future perspective of climate change in the region. Journal of Water and Climate Change, 2022, 13(9):3357-3378.
[24] 樊海潮, 顾万荣, 杨德光, 等. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响. 作物学报, 2018, 44(6):909-919.
doi: 10.3724/SP.J.1006.2018.00909
[25] 卢昆丽, 尹燕枰, 王振林, 等. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制. 作物学报, 2014, 40(9):1686-1694.
[26] 徐荣琼, 张翼飞, 杜嘉瑞, 等. 叶面喷施钙肥对春玉米茎秆抗倒伏特性与产量形成的影响. 作物杂志, 2024(3):223-230.
[27] Porakala V K, Bineeta M B, Roopa L G, et al. Potential of zinc glycinate and calcium chloride on morphological and yield characters of wheat (Triticum aestivum L). International Journal of Environment and Climate Change, 2023, 13(10):4031-4037.
[28] 吴儒刚, 裴艳婷, 张超, 等. 基于盐胁迫的小麦农艺性状多样性分析及评价. 麦类作物学报, 2019, 39(9):1029-1037.
[29] 赵博慧, 张影全, 景东林, 等. 基于多年定点的小麦籽粒质量稳定性研究. 中国农业科学, 2024, 57(9):1833-1844.
doi: 10.3864/j.issn.0578-1752.2024.09.016
[30] 赵康, 杨涛, 王红刚, 等. 42个新疆海岛棉品种萌发期耐盐性评价. 作物杂志, 2022(5):27-33.
[31] 鞠乐, 陈培育, 牛银亭, 等. 不同谷子品种(系)萌发期对干旱胁迫的响应及抗旱性评价. 江苏农业科学, 2023, 51(23):40-46.
[1] 吕荣臻, 买合木提·肉孜, 张勇, 买合木提·热木图拉, 牙尔买买提·阿力木, 张建成, 于天一. 外源激素及抑制剂对酸化土壤花生激素含量及生长发育的影响[J]. 作物杂志, 2025, (3): 218–224
[2] 刘佩瑶, 冉莉萍, 杨佳庆, 王海博, 熊飞, 余徐润. 小麦穗形态建成和生理特征及外界影响因素的研究进展[J]. 作物杂志, 2025, (1): 1–9
[3] 冯晓敏, 高翔, 吕慧卿, 郝志萍, 张力, 周忠宇, 张永清. 抗旱糜子根系生长特性及叶片表皮结构对水分胁迫的响应[J]. 作物杂志, 2024, (4): 172–179
[4] 孙悦颖, 刘景辉, 米俊珍, 赵宝平, 李英浩, 朱珊珊. 乳酸菌复合制剂对燕麦的促生作用研究[J]. 作物杂志, 2024, (2): 122–128
[5] 刘佳, 吴天一, 朱嘉宇, 邓绍珠, 张玉先, 梁喜龙, 金喜军. 烯效唑与褪黑素复配对红小豆萌发和根系形态的影响[J]. 作物杂志, 2024, (1): 180–186
[6] 周旭, 何晓蕾, 曹亮, 李多, 傅晨野, 张明聪, 张玉先, 王孟雪. 苗期不同程度水分胁迫及复水处理对大豆抗氧化特性及产量的影响[J]. 作物杂志, 2023, (6): 135–142
[7] 赵海燕, 赵丽洁, 韩根兰, 王江, 王子建, 聂萌恩, 杜慧玲, 原向阳, 董淑琦. 氮锌配施对谷子根系形态及锌含量的影响[J]. 作物杂志, 2023, (4): 152–158
[8] 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 马铃薯生长及生理特性对水分胁迫的响应研究综述[J]. 作物杂志, 2023, (4): 16–21
[9] 傅晓艺, 王红光, 刘志连, 李东晓, 何明琦, 李瑞奇. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选[J]. 作物杂志, 2023, (4): 224–229
[10] 徐雪雯, 王兴鹏, 王洪博, 李国辉, 唐茂淞, 曹振玺. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023, (3): 188–194
[11] 顾逸彪, 颜佳倩, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 周振玲, 徐大勇, 杨建昌, 顾骏飞. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023, (2): 67–76
[12] 高伟, 郝青婷, 张泽燕, 王茜, 闫虎斌, 朱慧珺, 赵雪英, 张耀文. 施氮磷肥对小豆产量、根系形态及光合特性的影响[J]. 作物杂志, 2023, (1): 109–114
[13] 李迪秦, 姚少云, 王青, 易克, 刘伊芸, 汤晓明, 彭媛媛, 符昌武. 烟苗生长发育对不同氮源形态的响应[J]. 作物杂志, 2023, (1): 201–206
[14] 孟霖, 祖庆学, 聂忠扬, 冯裕洋, 仙立国, 朱国兵, 杨秀军, 孙福山. 贵阳烟区云烟87不同长相中棵烟产量和质量比较分析[J]. 作物杂志, 2023, (1): 207–211
[15] 范端阳, 尹美强, 温银元, 郭之瑶, 温艳杰, 王钰麒, 孙敏, 高志强. 硝铵氮源配比对谷子苗期生长及氮素利用的影响[J]. 作物杂志, 2023, (1): 96–102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!