作物杂志,2022, 第5期: 112 doi: 10.16035/j.issn.1001-7283.2022.05.001
• 专题综述 • 下一篇
Wang Hanxiang(), Li Guangcun, Xu Jianfei, Wang Wanxing(), Jin Liping()
摘要:
高盐是限制农作物生长和生产最主要的非生物逆境之一。土壤中过多的盐离子对植物细胞造成渗透、离子和氧化胁迫。植物感知胁迫信号后,激活脱落酸、盐过敏感通路维持体内渗透平衡和离子稳态,运行抗氧化系统以应对过量的活性氧。本文通过信号转导、渗透保护剂及溶质的生物合成、离子稳态及区域化、抗氧化系统和植物激素调控等方面综述了植物盐胁迫反应的组成、途径及其调控机制的研究进展,有助于研究人员在逆境条件下培育高产优质的农作物。
[1] | Ali N M, Altaey D, Altaee N H. The impact of selenium,nano (SiO2) and organic fertilization on growth and yield of potato Solanum tuberosum L. under salt stress conditions. IOP Conference Series: Earth and Environmental Science, 2021, 735(1):12042. |
[2] | Rinse J, De V, De B, et al. Effect of salt stress on growth,Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS ONE, 2013, 8(3):60183. |
[3] |
Munns R. Genes and salt tolerance:Bringing them together. New Phytologist, 2005, 167(3):645-663.
pmid: 16101905 |
[4] |
Li J J, Ma J J, Guo H L, et al. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress. Plant Physiology and Biochemistry, 2018, 126:1-10.
doi: 10.1016/j.plaphy.2018.02.018 |
[5] | 胡延飞. 番茄microRNA398的表达及在耐盐性中功能的初步分析. 杭州:浙江农林大学. |
[6] |
Yuan F, Yang H, Xue Y, et al.. OSCA 1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514(7522):367-371.
doi: 10.1038/nature13593 |
[7] |
Zhang M, Wang D, Kang Y, et al. Structure of the mechanosensitive OSCA channels. Nature Structural and Molecular Biology, 2018, 25(9):850-858.
doi: 10.1038/s41594-018-0117-6 pmid: 30190597 |
[8] |
Jiang Z, Zhou X, Tao M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572(7769):341-346.
doi: 10.1038/s41586-019-1449-z |
[9] | Martinière A, Lavagi I, Nageswaran G, et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31):12805-12810. |
[10] |
Feng W, Kita D, Peaucelle A, et al. The feronia receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Current Biology, 2018, 28(5):666-675.
doi: S0960-9822(18)30025-3 pmid: 29456142 |
[11] |
Zelm V A, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 2020, 71:403-433.
doi: 10.1146/annurev-arplant-050718-100005 pmid: 32167791 |
[12] |
Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant,Cell and Environment, 2010, 33(4):453-467.
doi: 10.1111/j.1365-3040.2009.02041.x |
[13] |
Zepeda-Jazo I, Velarde-Buendia A M, Enriquez-Figueroa R, et al. Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiology, 2011, 157(4):2167-2180.
doi: 10.1104/pp.111.179671 pmid: 21980172 |
[14] |
Li H Y, Tang X Q, Yang X Y, et al. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress. Scientific Reports, 2021, 11(1):12878.
doi: 10.1038/s41598-021-92317-6 |
[15] |
Teh C Y, Shaharuddin N A, Ho C L, et al. Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiologiae Plantarum, 2016, 38(6):151.
doi: 10.1007/s11738-016-2163-1 |
[16] |
Butt M, Sattar A, Abbas T, et al. Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes,ionic homeostasis,and antioxidant defense mechanisms. Horticulture,Environment and Biotechnology, 2020, 61(9):693-702.
doi: 10.1007/s13580-020-00236-8 |
[17] |
Szabados L, Savouré A. Proline:a multifunctional amino acid. Trends in Plant Science, 2010, 15(2):89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181 |
[18] |
Zhang C S, Lu Q, Verma D. Removal of feedback inhibition of δ1-pyrroline-5-carboxylate synthetase,a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. Journal of Biological Chemistry, 1995, 270(35):20491-20496.
doi: 10.1074/jbc.270.35.20491 pmid: 7657626 |
[19] |
Blackman S A, Leopold R L O C. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology, 1992, 100(1):225.
doi: 10.1104/pp.100.1.225 pmid: 16652951 |
[20] |
Guo R, Yang Z Z, Li F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biology, 2015, 15(1):170.
doi: 10.1186/s12870-015-0546-x |
[21] |
Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 2000, 40(2):482-487.
doi: 10.2135/cropsci2000.402482x |
[22] |
Makela P, Krkkinen J, Somersalo S. Effect of glycinebetaine on chloroplast ultrastructure,chlorophyll and protein content,and rubpco activities in tomato grown under drought or salinity. Biologia Plantarum, 2000, 43(3):471-475.
doi: 10.1023/A:1026712426180 |
[23] |
De la Torre-Gonzalez A, Montesinos P D, Blasco B, et al. Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. Journal of Plant Physiology, 2018, 231:329-336.
doi: S0176-1617(18)30374-2 pmid: 30388672 |
[24] |
Xu Z J, Sun M L, Jiang X F, et al. Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Frontiers in Plant Science, 2018, 9:1469.
doi: 10.3389/fpls.2018.01469 pmid: 30369936 |
[25] |
Chen T H, Murata N. Glycinebetaine protects plants against abiotic stress:mechanisms and biotechnological applications. Plant,Cell and Environment, 2011, 34(1):1-20.
doi: 10.1111/j.1365-3040.2010.02232.x |
[26] |
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 2021, 172(2):1321-1335.
doi: 10.1111/ppl.13297 |
[27] |
Jia G X, Zhu Z Q, Chang F Q, et al. Transformation of tomato with the BADH gene from atriplex improves salt tolerance. Plant Cell Reports, 2002, 21(2):141-146.
doi: 10.1007/s00299-002-0489-1 |
[28] |
Niazian M, Sadat-Noori S A, Tohidfar M, et al. Agrobacterium- mediated genetic transformation of ajowan (Trachyspermum ammi (L.) Sprague):an important industrial medicinal plant. Industrial Crops and Products, 2019, 132:29-40.
doi: 10.1016/j.indcrop.2019.02.005 |
[29] |
Bohnert H J, Nelson D E, Jensen R G. Adaptation to environmental stresses. Plant Cell, 1995, 7(7):1099-1111.
doi: 10.2307/3870060 |
[30] | Gupta B, Huang B. Mechanism of salinity tolerance in plants:physiological,biochemical,and molecular characterization. International Journal of Genomics, 2014, 2014:701596. |
[31] |
Bassil E, Coku A, Blumwald E. Cellular ion homeostasis:emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. Journal of Experimental Botany, 2012, 63(16):5727-5740.
doi: 10.1093/jxb/ers250 pmid: 22991159 |
[32] | Dragwidge J M, Scholl S, Schumacher K, et al. NHX-type Na+ (K+)/H+ antiporters are required for TGN/EE trafficking and endosomal ion homeostasis in Arabidopsis thaliana. Journal of Cell Science, 2019, 132(7):226472. |
[33] |
Kumar S, Kalita A, Srivastava R, et al. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity,oxidative stress,and herbicide in transgenic mungbean. Frontiers in Plant Science, 2017, 8:1896.
doi: 10.3389/fpls.2017.01896 |
[34] | Yamaguchi T, Aharon G S, Sottosanto J B, et al. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44):16107-16112. |
[35] | Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12):6896-6901. |
[36] | Liu J, Ishitani M, Halfter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7):3730-3734. |
[37] |
Ishitani M, Liu J, Halfter U, et al. SOS 3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12(9):1667-1678.
doi: 10.1105/tpc.12.9.1667 pmid: 11006339 |
[38] |
Quan R, Lin H X, Mendoza I, et al. SCaBP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS 2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19(4):1415-1431.
doi: 10.1105/tpc.106.042291 |
[39] | Quintero F J, Martinez-Atienza J, Villalta I, et al. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6):2611-2616. |
[40] |
Li J, Zhou H, Zhang Y, et al. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Developmental Cell, 2020, 55(3):367-380.
doi: 10.1016/j.devcel.2020.08.005 |
[41] |
Yang Z J, Wang C W, Xue Y, et al. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nature Communications, 2019, 10(1):1199.
doi: 10.1038/s41467-019-09181-2 pmid: 30867421 |
[42] |
Hamamoto S, Horie T, Hauser F, et al. HKT transporters mediate salt stress resistance in plants:from structure and function to the field. Current Opinion in Biotechnology, 2015, 32:113-120.
doi: S0958-1669(14)00213-4 pmid: 25528276 |
[43] | Pang C H, Wang B S. Oxidative stress and salt tolerance in plants. Progress in Botany, 2008, 69:231-245. |
[44] |
Tewari R K, Kumar P, Sharma P N. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta, 2006, 223(6):1145-1153.
pmid: 16292566 |
[45] |
Tjus S E, Scheller H V, Andersson B, et al. Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I,but also to photosystem II. Plant Physiology, 2001, 125(4):2007-2015.
pmid: 11299380 |
[46] | 吴顺, 萧浪涛. 植物体内活性氧代谢及其信号传导. 湖南农业大学学报(自然科学版), 2003, 29(5):450-456. |
[47] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
doi: 10.1016/j.plaphy.2010.08.016 pmid: 20870416 |
[48] |
Mittler R. Oxidative stress,antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9):405-410.
doi: 10.1016/s1360-1385(02)02312-9 pmid: 12234732 |
[49] |
Arias-Moreno D M, Jiménez-Bremont J, Maruri-López I, et al. Effects of catalase on chloroplast arrangement in opuntia streptacantha chlorenchyma cells under salt stress. Scientific Reports, 2017, 7(1):8656.
doi: 10.1038/s41598-017-08744-x pmid: 28819160 |
[50] | Noctor G, Foyer C H. A re-evaluation of the atp:NADPH budget during cphotosynthesis:a contribution from nitrate assimilation and its associated respiratory activity?. Journal of Experimental Botany, 1998, 49(329):1895-1908. |
[51] |
Lopez F, Felicie P, Vansuyt G, et al. Ascorbate peroxidase activity,not the mRNA level,is enhanced in salt-stressed Raphanus sativus plants. Physiologia Plantarum, 1996, 97(1):13-20.
doi: 10.1111/j.1399-3054.1996.tb00472.x |
[52] |
Edwards E A, Rawsthorne S, Mullineaux P M. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta, 1990, 180(2):278-284.
doi: 10.1007/BF00194008 pmid: 24201957 |
[53] | Creissen G P, Broadbent P, Kular B, et al. Manipulation of glutathione reductase in transgenic plants:implications for plants' responses to environmental stress. Proceedings of the Royal Society of Edinburgh Section B:Biology Sciences, 1994, 102:167-175. |
[54] |
Wang Y, Yin Y, Chen J, et al. Transgenic arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Science, 2004, 167(4):671-677.
doi: 10.1016/j.plantsci.2004.03.032 |
[55] | 张海娜, 李小娟, 李存东, 等. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响. 作物学报, 2008, 34(8):1403-1408. |
[56] |
Wang M, Zhao X, Xiao Z, et al. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Molecular Biology, 2016, 91(1-2):115-130.
doi: 10.1007/s11103-016-0446-y |
[57] |
Shafi A, Chauhan R, Gill T, et al. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in arabidopsis under salt stress. Plant Molecular Biology, 2015, 87(6):615-631.
doi: 10.1007/s11103-015-0301-6 |
[58] | 杨子建, 周勇, 戈伶俐, 等. 黄瓜CsCAT3基因逆境胁迫表达及转拟南芥耐盐性分析. 分子植物育种, 2018, 16(3):807-812. |
[59] |
Sun T, Feng L, Wang W, et al. The role of sugarcane catalase gene ScCAT2 in the defense response to pathogen challenge and adversity stress. International Journal of Molecular Sciences, 2018, 19(9):2686.
doi: 10.3390/ijms19092686 |
[60] |
Badawi G H, Kawano N, Yamauchi Y, et al. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiologia Plantarum, 2004, 121(2):231-238.
doi: 10.1111/j.0031-9317.2004.00308.x |
[61] |
Zhang Z, Zhang Q, Wu J, et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought,salt and cold stresses. PLoS ONE, 2013, 8(2):e57472.
doi: 10.1371/journal.pone.0057472 |
[62] |
Singh N, Mishra A, Jha B. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Marine Biotechnology, 2014, 16(3):321-332.
doi: 10.1007/s10126-013-9548-6 |
[63] | Wang Y, Michael W, Richard M et al. Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. American Society for Horticultural Science, 2005, 130(2):167-173. |
[64] |
Zhai C Z, Lei Z, Yin L J, et al. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis. PLoS ONE, 2013, 8(10):e73989.
doi: 10.1371/journal.pone.0073989 |
[65] |
Riyazuddin R, Bela K, Horváth E, et al. Overexpression of the Arabidopsis glutathione peroxidase-like 5 gene (AtGPXL5) resulted in altered plant development and redox status. Environmental and Experimental Botany, 2019, 167:103849.
doi: 10.1016/j.envexpbot.2019.103849 |
[66] |
Diao Y, Xu H, Li G, et al. Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice. Molecular Biology Reports, 2014, 41(8):4919-4927.
doi: 10.1007/s11033-014-3358-4 |
[67] |
Eltayeb A E, Kawano N, Badawi G H, et al. Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone,salt and polyethylene glycol stresses. Planta, 2007, 225(5):1255-1264.
doi: 10.1007/s00425-006-0417-7 |
[68] |
Eltelib H A, Fujikawa Y, Esaka M. Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. South African Journal of Botany, 2012, 78:295-301.
doi: 10.1016/j.sajb.2011.08.005 |
[69] |
Kim I S, Kim Y S, Kim Y H, et al. Potential application of the Oryza sativa monodehydroascorbate reductase gene (OsMDHAR) to improve the stress tolerance and fermentative capacity of saccharomyces cerevisiae. PLoS ONE, 2016, 11(7):e0158841.
doi: 10.1371/journal.pone.0158841 |
[70] |
Ushimaru T, Nakagawa T, Fujioka Y, et al. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. Journal of Plant Physiology, 2006, 163 (11):1179-1184.
pmid: 17032619 |
[71] |
Eltayeb A E, Yamamoto S, Habora M, et al. Transgenic potato overexpressing arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide,drought and salt stresses. Breeding Science, 2011, 61(1):3-10.
doi: 10.1270/jsbbs.61.3 |
[72] |
Wu T M, Lin W R, Kao C H, et al. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. Plant Molecular Biology, 2015, 87(6):555-564.
doi: 10.1007/s11103-015-0290-5 |
[73] |
Athar H, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany, 2008, 63(1-3):224-231.
doi: 10.1016/j.envexpbot.2007.10.018 |
[74] | Behairy R T, Eldanasoury M, Craker L. Impact of ascorbic acid on seed germination,seedling growth,and enzyme activity of salt-stressed fenugreek. Journal of Medicinally Active Plants 1, 2012, 1(3):106-113. |
[75] |
Makavitskaya M, Svistunenko D, Navaselsky I, et al. Novel roles of ascorbate in plants:Induction of cytosolic Ca2+ signals and efflux from cells via anion channels. Journal of Experimental Botany, 2018, 69(14):3477-3489.
doi: 10.1093/jxb/ery056 pmid: 29471538 |
[76] |
Saradhi A, Saradhi P P. Proline accumulation under heavy metal stress. Journal of Plant Physiology, 1991, 138(5):554-558.
doi: 10.1016/S0176-1617(11)80240-3 |
[77] |
Rajendrakumar C, Reddy B, Reddy A R. Proline-protein interactions:protection of structural and functional integrity of M4 lactate dehydrogenase. Biochemical and Biophysical Research Communications, 1994, 201(2):957-963.
pmid: 8003037 |
[78] | 陈沁, 刘友良. 谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用. 作物学报, 2000, 26(3):365-371. |
[79] |
Surówka E, Latowski D, Dziurka M, et al. Ros-scavengers,osmoprotectants and violaxanthin de-epoxidation in salt-stressed Arabidopsis thaliana with different tocopherol composition. International Journal of Molecular Sciences, 2021, 22(21):11370.
doi: 10.3390/ijms222111370 |
[80] |
Semida W M, Taha R S, Abdelhamid M T, et al. Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African Journal of Botany, 2014, 95:24-31.
doi: 10.1016/j.sajb.2014.08.005 |
[81] |
Zeng X Q, Chow W S, Su L J, et al. Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. Physiologia Plantarum, 2010, 138(2):215-225.
doi: 10.1111/j.1399-3054.2009.01316.x |
[82] |
Hatier J, Gould K S. Foliar anthocyanins as modulators of stress signals. Journal of Theoretical Biology, 2008, 253(3):625-627.
doi: 10.1016/j.jtbi.2008.04.018 |
[83] |
Oosten M V, Sharkhuu A, Batelli G, et al. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Molecular Biology, 2013, 83(4-5):405-415.
doi: 10.1007/s11103-013-0099-z |
[84] | Irving H R, Gehring C A, Parish R W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(5):1790-1794. |
[85] |
Brandt B, Munemasa S, Wang C, et al. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. Elife, 2015, 4:e03599.
doi: 10.7554/eLife.03599 |
[86] |
Zhu Y, Huang P, Guo P, et al. CDK 8 is associated with rap2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. New Phytologist, 2020, 228(5):1573-1590.
doi: 10.1111/nph.16787 |
[87] |
Hoang X L T, Nhi D N H, Thu N B A, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses. Current Genomics, 2017, 18(6):483-497.
doi: 10.2174/1389202918666170227150057 pmid: 29204078 |
[88] |
Hashimoto K, Kudla J. Calcium decoding mechanisms in plants. Biochimie, 2011, 93(12):2054-2059.
doi: 10.1016/j.biochi.2011.05.019 pmid: 21658427 |
[89] |
Batistič O, Kudla J. Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta, 2012, 1820(8):1283-1293.
doi: 10.1016/j.bbagen.2011.10.012 pmid: 22061997 |
[90] |
Ashraf M, Akram N A, Arteca R N, et al. The physiological,biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 2010, 29(3):162-190.
doi: 10.1080/07352689.2010.483580 |
[91] | Shu H M, Guo S Q, Gong Y Y, et al. Effects of brassinosteroid on salinity tolerance of cotton. Agricultural Science and Technology, 2014, 15(9):1433-1437,1470. |
[92] |
El-Mashad A, Mohamed H I. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 2012, 249(3):625-635.
doi: 10.1007/s00709-011-0300-7 pmid: 21732069 |
[93] |
Li Q, Xu F, Chen Z, et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nature Plants, 2021, 7(8):1108-1118.
doi: 10.1038/s41477-021-00959-1 pmid: 34226689 |
[94] |
Yang L, Zu Y G, Tang Z H et al. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311(5757):91-94.
doi: 10.1126/science.1118642 pmid: 16400150 |
[95] |
Peng J Y, Li Z H, Wen X, et al. Salt-induced stabilization of EIN3/EIL 1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genetics, 2014, 10(10):e1004664.
doi: 10.1371/journal.pgen.1004664 |
[96] |
Lei Y, Zu Y G, Tang ZH. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environmental and Experimental Botany, 2013, 86:60-69.
doi: 10.1016/j.envexpbot.2010.08.006 |
[97] | 王娟, 黄荣峰. 乙烯调控植物耐盐性的研究进展. 植物生理学报, 2015, 51(10):1567-1572. |
[98] |
Farhangi-Abriz S, Ghassemi-Golezani K. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants?. Ecotoxicology and Environmental Safety, 2018, 147:1010-1016.
doi: S0147-6513(17)30668-1 pmid: 29976003 |
[99] | Zhao C, Zayed O, Yu Z, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(51):13123-13128. |
[100] | Zhao C, Jiang W, Omar Z, et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. National Science Review, 2020, 8(1):149. |
[101] |
Zhu Z, Wei G, Li J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 2004, 167(3):527-533.
doi: 10.1016/j.plantsci.2004.04.020 |
[102] |
Zhang X, Zhang W, Lang D et al. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environmental Science and Pollution Research, 2018, 25(26):25916-25932.
doi: 10.1007/s11356-018-2595-9 |
[103] | 位晶. 外源硒对玉米根系形态和养分吸收的影响及在盐胁迫中作用. 保定:河北大学. |
[104] |
Napieraj N, Reda M G, Janicka M G. The role of NO in plant response to salt stress:interactions with polyamines. Functional Plant Biology, 2020, 47(10):865-879.
doi: 10.1071/FP19047 pmid: 32522331 |
[105] | Ahmad P, Wani M. Physiological mechanisms and adaptation strategies in plants under changing environment. Springer,New York: 2014:137-159. |
[106] |
Zhang Y, Wang L, Liu Y, et al. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 2006, 224(3):545-555.
doi: 10.1007/s00425-006-0242-z |
[107] |
Kopyra M, Gwód E W A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of lupinus luteus. Plant Physiology and Biochemistry, 2003, 41(11/12):1011-1017.
doi: 10.1016/j.plaphy.2003.09.003 |
[108] |
Dong R, Jie Z, Huan H, et al. High salt tolerance of a bradyrhizobium strain and its promotion of the growth of stylosanthes guianensis. International Journal of Molecular Sciences, 2017, 18(8):1625.
doi: 10.3390/ijms18081625 |
[109] |
Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants:a review. Microbiological Research, 2018, 209:21-32.
doi: 10.1016/j.micres.2018.02.003 |
[110] |
Wani S H, Kumar V, Khare T, et al. Engineering salinity tolerance in plants:progress and prospects. Planta, 2020, 251(4):76.
doi: 10.1007/s00425-020-03366-6 |
[111] |
Li W F, Wang D L, Jin T C, et al. The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Molecular Biology Reporter, 2011, 29(2):278-290.
doi: 10.1007/s11105-010-0224-y |
[112] |
Fita A, Rodríguez-Burruezo A, Boscaiu M, et al. Breeding and domesticating crops adapted to drought and salinity:a new paradigm for increasing food production. Frontiers in Plant Science, 2015, 6:978.
doi: 10.3389/fpls.2015.00978 pmid: 26617620 |
[113] |
Rus A M, Estañ M T, Gisbert C, et al. Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant,Cell and Environment, 2001, 24(8):875-880.
doi: 10.1046/j.1365-3040.2001.00719.x |
[114] | Ghanti S, Sujata K G, Kumar B, et al. Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biologia Plantarum, 2011, 55(4):634. |
[115] |
Pandolfi C, Azzarello E, Mancuso S, et al. Acclimation improves salt stress tolerance in Zea mays plants. Journal of Plant Physiology, 2016, 201:1-8.
doi: S0176-1617(16)30108-0 pmid: 27372277 |
[116] |
Farhangi-Abriz S, Torabian S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, 2017, 137:64-70.
doi: S0147-6513(16)30503-6 pmid: 27915144 |
[1] | 闻丹妮, 鲍聆然, 刘蒙蒙, 沈波. OsWD40过表达水稻根系响应盐胁迫的转录组分析[J]. 作物杂志, 2022, (6): 4253 |
[2] | 王金香, 王艳芝, 幸丽璇, 刘建霞, 王润梅. 赤霉素对盐胁迫下绿宝糯黍子幼苗根生长及渗透调节的影响[J]. 作物杂志, 2022, (6): 98104 |
[3] | 王燕, 李廷友, 王豆, 李佳薇, 彭雯璐, 芮海云. 异甜菊醇对盐胁迫下小麦幼苗生长的影响[J]. 作物杂志, 2022, (5): 141145 |
[4] | 施娴, 李洪有, 卢丙越, 周云, 赵继菊, 赵孟丽, 梁京, 孟衡玲. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022, (3): 149154 |
[5] | 吴鹏博, 李立军, 张艳丽. 油菜苗期耐盐碱性综合评价与根际土壤有机酸含量比较[J]. 作物杂志, 2022, (1): 110115 |
[6] | 蔡琪琪, 王堽, 董寅壮, 於丽华, 王宇光, 耿贵. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022, (1): 130136 |
[7] | 翁文凤, 伍小方, 张凯旋, 唐宇, 江燕, 阮景军, 周美亮. 过表达FtbZIP5提高苦荞毛状根黄酮积累及其耐盐性[J]. 作物杂志, 2021, (4): 19 |
[8] | 魏艳秋, 景艺卓, 郭笑恒, 张力, 韩丹, 邵惠芳. 外源硒对植物抗盐性的影响研究进展[J]. 作物杂志, 2021, (2): 1521 |
[9] | 张自强, 白晨, 张惠忠, 李晓东, 王良, 付增娟, 赵尚敏, 鄂圆圆, 张辉, 张必周. 甜菜耐盐性形态学、生理生化特性及分子水平研究进展[J]. 作物杂志, 2020, (3): 2733 |
[10] | 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 6775 |
[11] | 张笛,苗兴芬,王雨婷. 100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选[J]. 作物杂志, 2019, (6): 4349 |
[12] | 戈珍梅,刘治国,赵露,张晓宇,刘桂霞. 盐胁迫对膜荚黄芪种子萌发的影响[J]. 作物杂志, 2019, (6): 187194 |
[13] | 谷娇娇,胡博文,贾琰,沙汉景,李经纬,马超,赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019, (4): 176182 |
[14] | 方婧雯,邬燕,刘志华. 盐胁迫对罗布麻种子萌发及生理特性的影响[J]. 作物杂志, 2018, (4): 167174 |
[15] | 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 4852 |
|