作物杂志,2023, 第4期: 152–158 doi: 10.16035/j.issn.1001-7283.2023.04.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

氮锌配施对谷子根系形态及锌含量的影响

赵海燕(), 赵丽洁, 韩根兰, 王江, 王子建, 聂萌恩, 杜慧玲(), 原向阳, 董淑琦   

  1. 山西农业大学农学院,030801,山西晋中
  • 收稿日期:2022-03-29 修回日期:2022-06-01 出版日期:2023-08-15 发布日期:2023-08-15
  • 通讯作者: 杜慧玲,主要从事作物化学调控研究,E-mail:duhuiling66@163.com
  • 作者简介:赵海燕,主要从事作物化学调控与逆境生理研究,E-mail:zhy18434763246@163.com
  • 基金资助:
    山西省重点研发计划项目(201903D221050);山西省留学人员科研资助项目(2020-060);山西农业大学学术恢复科研专项(2020xshf42);国家现代农业产业技术体系项目(CARS-06-14.5-A28);山西省现代农业产业技术体系谷子体系建设项目(GZTX202217)

Effects of Nitrogen and Zinc Application on Root Morphology and Zinc Content in Foxtail Millet

Zhao Haiyan(), Zhao Lijie, Han Genlan, Wang Jiang, Wang Zijian, Nie Meng’en, Du Huiling(), Yuan Xiangyang, Dong Shuqi   

  1. College of Agronomy, Shangxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2022-03-29 Revised:2022-06-01 Online:2023-08-15 Published:2023-08-15

摘要:

利用盆栽试验,采用完全随机区组设计,以晋谷21为供试品种,以尿素和ZnSO4·7H2O为供试肥料,设4个氮肥水平(0、120、180、240kg/hm2)和3个锌肥水平(20、40、80mg/L),研究了氮锌配施对谷子根系形态及锌含量的影响。结果表明,同一氮水平不同锌水平及同一锌水平不同氮水平处理下,喷施锌肥后7d和15d,谷子根长、投影面积、表面积和根尖数等根系形态指标均随着施锌、氮浓度的增加呈先上升后下降趋势。与单施锌肥相比,增施氮肥可有效增加谷子根系各形态指标,N0Zn40和N120Zn40处理根系各形态指标值均较大。N120Zn40处理与同氮、同锌水平下的其他处理相比,谷子根系活力显著上升,根冠比也有所增加,整体表现出较强的活性。喷施锌肥后15d,谷子根系锌含量在低氮和中氮条件下随着施锌浓度的增加呈升高趋势;N120Zn40处理谷子根系锌含量比同一锌水平不同氮水平的其他处理分别显著增加了76.00%、47.22%和15.43%。适宜比例的氮锌肥配施具有良好的协同效应,而氮120kg/hm2、锌40mg/L为本试验条件下最佳配施组合。

关键词: 谷子, 锌含量, 氮锌配施, 根系形态

Abstract:

With pot experiment and complete randomized block design, Jingu 21 was used as material, urea and ZnSO4?7H2O as the fertilizer, the effects of nitrogen and zinc application on root morphology and zinc content in foxtail millet were studied by using four nitrogen fertilizer levels (0, 120, 180 and 240kg/ha), and three zinc fertilizer levels (20, 40 and 80mg/L). The results showed that, under different zinc treatment levels of the same nitrogen level and different nitrogen treatment levels of the same zinc level, seven and 15 days after zinc fertilizer injection, root length, projection area, surface area and root tip number all rose and then declined with the increase of zinc and nitrogen concentration. Compared with single application of zinc fertilizer, increasing nitrogen fertilizer could effectively increase the morphological index of foxtail millet root system, and the values of root forms of N0Zn40 and N120Zn40 treatments were large. The root activity of N120Zn40 treatment increased significantly compared with other treatments at the same nitrogen and zinc levels, and the root-shoot ratio also increased, which showed strong activity. At 15 days after zinc spraying, the zinc content of root increased with the increase of zinc concentration under low nitrogen and medium nitrogen; the zinc content of N120Zn40 treatment increased by 76.00%, 47.22% and 15.43% compared with other treatments with different nitrogen levels at the same zinc level. Therefore, the appropriate proportion of nitrogen and zinc fertilizer dispensing had a good synergistic effect, while nitrogen 120kg/ha and zinc 40mg/L were the best dispensing combination under this test condition.

Key words: Foxtail millet, Zinc content, Nitrogen and zinc application, Root morphology

表1

氮锌配施7d后对谷子根系形态的影响

指标Index 处理Treatment N0 N120 N180 N240
长度Length (cm) Zn20 152.04±34.93bB 289.78±64.80aAB 218.95±55.21abAB 194.99±7.37bB
Zn40 480.98±53.41aA 372.66±78.64bA 289.72±24.30bcA 259.76±17.97cA
Zn80 145.99±37.02bB 214.97±11.53aB 181.22±11.70abB 164.43±30.30bB
投影面积Projected area (cm2) Zn20 4.21±0.89bB 8.31±2.31aA 5.61±1.89abAB 4.92±0.88bB
Zn40 11.11±1.24aA 8.47±2.46abA 7.76±0.29bA 7.69±1.22bA
Zn80 4.70±1.19aB 6.42±1.33aA 5.21±0.32aB 5.02±0.68aB
表面积Surface area (cm2) Zn20 13.23±2.78bB 26.11±7.27aA 17.63±5.95abAB 15.47±2.75bB
Zn40 34.91±3.91aA 26.60±7.72abA 24.38±0.90bA 24.15±3.82bA
Zn80 14.76±3.73aB 20.17±4.18aA 16.36±1.01aB 15.77±2.15aB
根尖数Number of root tips Zn20 1028.33±390.26bB 1896.33±437.35aAB 1496.67±418.23abAB 1256.67±222.53abA
Zn40 3107.67±827.75aA 2882.67±711.73aA 2007.33±267.40abA 1554.00±254.68bA
Zn80 731.00±187.84bB 1386.67±248.42aB 1285.67±205.93abB 1151.00±521.35abA

表2

氮锌配施15d后对谷子根系形态的影响

指标Index 处理Treatment N0 N120 N180 N240
长度Length (cm) Zn20 594.57±80.61aB 683.17±25.15aB 656.90±48.21aB 447.80±48.71bB
Zn40 738.33±11.63bA 884.55±32.15aA 787.61±30.79bA 567.78±57.74cA
Zn80 616.06±69.72aAB 620.37±62.48aB 537.46±59.69aC 369.67±32.22bB
投影面积Projected area (cm2) Zn20 14.51±0.63bA 16.12±0.44aB 15.26±0.41abB 10.56±1.36cAB
Zn40 15.95±1.44cA 19.55±1.18aA 17.90±0.39abA 13.42±2.12bcA
Zn80 14.05±2.26aA 14.43±2.25aB 15.06±0.78aB 10.02±0.10bB
表面积Surface area (cm2) Zn20 46.24±2.09aA 47.32±3.43aB 48.49±0.75aB 33.18±4.27bAB
Zn40 50.10±4.54bcA 63.47±5.79aA 56.17±1.14abA 42.16±6.66cA
Zn80 44.15±7.11aA 45.33±7.07aB 47.33±2.46aB 31.38±0.38bB
根尖数Tips number of root Zn20 4131.33±688.76abA 4921.33±449.67aB 4709.00±614.08aAB 3510.67±343.96bA
Zn40 4807.67±337.05bcA 6499.67±108.19aA 5651.33±830.94abA 3991.67±576.68cA
Zn80 4837.67±674.51aA 4909.00±163.24aB 3739.00±732.33bB 2503.00±462.93cB

图1

氮锌配施对谷子根系活力的影响 不同小写字母表示同一锌水平下的差异显著,不同大写字母表示同一氮水平下的差异显著(P < 0.05),下同

图2

氮锌配施对谷子根冠比的影响

图3

氮锌配施对谷子根系锌含量的影响

图4

氮锌配施对谷子锌转运的影响

[1] 朱盼盼, 马彦平, 周忠雄, 等. 微量元素锌与植物营养和人体健康. 肥料与健康, 2021, 48(5):16-18,23.
[2] 付乐乐, 李庆林, 徐先锋. 果蔬作物锌、 镁、铁缺素症的诊断及防治. 中国园艺文摘, 2016, 32(7):221-222.
[3] Stomph T J, Jiang W, Peter E L, et al. Zinc allocation and re- allocation in rice. Frontier in Plant Science, 2014, 5:8.
[4] 田苗, 李鹏, 赵珅, 等. 叶面肥及其在水稻上的应用. 北方水稻, 2021, 51(4):52-54.
[5] 韩金玲, 李雁鸣, 马春英. 锌对作物生长发育及产量的影响(综述). 河北科技师范学院学报, 2004, 18(4):72-75.
[6] 王志强, 刘康, 彭凌馨, 等. 锌肥对干旱下冬小麦产量形成及籽粒锌积累动态的影响. 灌溉排水学报, 2017, 36(9):20-24.
[7] 张腾, 崔利利, 刘艳妮, 等. 施用纳米氧化锌对小麦籽粒锌含量和锌利用率的影响. 干旱地区农业研究, 2018, 36(4):7-14.
[8] Li H B, Ma Q H, Li H G, et al. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant and Soil, 2014, 376:151-163.
doi: 10.1007/s11104-013-1965-9
[9] Angela H. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 2004, 162:9-24.
doi: 10.1111/nph.2004.162.issue-1
[10] Yu P, White P J, Hochholdinger F, et al. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta, 2014, 240:667-668.
doi: 10.1007/s00425-014-2150-y pmid: 25143250
[11] Zhao P, Yang F, Sui F, et al. Effect of nitrogen fertilizers on zinc absorption and translocation in winter wheat. Journal of Plant Nutrition, 2016, 39(9):1311-1318.
doi: 10.1080/01904167.2015.1106560
[12] Nie Z J, Zhao P, Wang J, et al. Absorption kinetics and subcellular fractionation of zinc in winter wheat in response to nitrogen supply. Frontiers in Plant Science, 2017, 8:1435.
doi: 10.3389/fpls.2017.01435 pmid: 28868060
[13] 梁振凯, 郭聪颖, 王彩芝, 等. 氮锌配施促进小麦根系形态建成及其生理活性提高. 植物营养与肥料学报, 2020, 26(5):826-839.
[14] 常闻谦, 刘鹏, 赵世伟. 水氮耦合对谷子拔节后生长、产量和水氮利用效率的影响. 西北农业学报, 2018, 27(9):1313-1321.
[15] 许璐璐, 王涵, 高盼盼, 等. 环境胁迫对植物根系形态的影响. 安徽农业科学, 2020, 48(14):16-19.
[16] 王佳, 聂兆君, 扶海超, 等. 外源Zn2+对冬小麦幼苗根系生长及部分氮代谢关键酶的影响. 河南农业大学学报, 2018, 52(3):307-312.
[17] 刘秀红, 杜天庆, 苗果园. 不同施肥处理对大豆植株根系及产量的影响. 山西农业大学学报(自然科学版), 2008, 28(1):7-10.
[18] Masud A A C, Karim M F, Bhuyan M H M B, et al. Potassium- induced regulation of cellular antioxidant defense and improvement of physiological processes in wheat under water deficit condition. Phyton-International Journal of Experimental Botany, 2021, 90(2):353-359.
[19] 姜丽娜, 侯飞, 蒿宝珍, 等. Zn2+对小麦幼苗干物质及Zn积累的影响. 麦类作物学报, 2008, 28(6):1005-1010.
[20] 高阳, 楚光红, 傅积海, 等. 施氮量对滴灌高产春大豆根系生长及产量的影响. 干旱地区农业研究, 2018, 36(4):46-52.
[21] 杨秀红, 吴宗璞, 张国栋. 大豆品种根系性状与地上部性状的相关性研究. 作物学报, 2002, 28(1):72-75.
[22] Kutman U B, Yildiz B, Ozturk L, et al. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry, 2010, 87(1):1-9.
doi: 10.1094/CCHEM-87-1-0001
[23] 张均, 梁振凯, 李友军. 氮、 锌肥配施对小麦根系氮、锌含量和氮、锌代谢相关酶活性的影响. 河南农业科学, 2019, 48(8):18-26.
[24] 韩金玲, 李雁鸣, 马春英, 等. 施锌对小麦开花后氮、磷、钾、锌积累和运转的影响. 植物营养与肥料学报, 2006, 12(3):313-320.
[25] Erenoglu E B, Kutman U B, Ceylan Y, et al. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc 65Zn in wheat. The New Phytologist, 2011, 189(2):438-448.
doi: 10.1111/nph.2010.189.issue-2
[1] 赵云, 冯国郡, 胡相伟, 吾买尔江·库尔班, 李鹏兵, 李翠梅, 阿克博塔·木合亚提. 新疆喀什地区适栽抗除草剂复播谷子品种筛选初报[J]. 作物杂志, 2023, (3): 126–133
[2] 徐雪雯, 王兴鹏, 王洪博, 李国辉, 唐茂淞, 曹振玺. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023, (3): 188–194
[3] 贺水玲, 赵霞, 吴明琦, 王东胜. 外源NO和H2S对谷子种子萌发的影响[J]. 作物杂志, 2023, (2): 138–144
[4] 马继钰, 王爽, 李云, 郭振清, 王健, 林小虎, 韩玉翠. 种植密度对谷子农艺性状及产量的影响[J]. 作物杂志, 2023, (2): 222–228
[5] 王慧敏, 李明昊, 李云, 李菡, 王爽, 林小虎, 韩玉翠. 谷子品种(系)萌发期耐盐碱性鉴定及评价[J]. 作物杂志, 2023, (2): 57–66
[6] 顾逸彪, 颜佳倩, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 周振玲, 徐大勇, 杨建昌, 顾骏飞. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023, (2): 67–76
[7] 高伟, 郝青婷, 张泽燕, 王茜, 闫虎斌, 朱慧珺, 赵雪英, 张耀文. 施氮磷肥对小豆产量、根系形态及光合特性的影响[J]. 作物杂志, 2023, (1): 109–114
[8] 边淑惠, 邢国芳, 梁昕, 张舒玮, 王佳宁, 叶昊雨. 不同形态硒及用量对幼苗期谷子生长与生理的影响[J]. 作物杂志, 2023, (1): 152–157
[9] 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷农艺性状、产量及氮素利用的影响[J]. 作物杂志, 2023, (1): 58–67
[10] 范端阳, 尹美强, 温银元, 郭之瑶, 温艳杰, 王钰麒, 孙敏, 高志强. 硝铵氮源配比对谷子苗期生长及氮素利用的影响[J]. 作物杂志, 2023, (1): 96–102
[11] 沈文远, 陈昕钰, 余徐润, 吴云飞, 陈刚, 熊飞. 根际温度胁迫对小麦根系形态及生理影响的研究进展[J]. 作物杂志, 2022, (6): 23–32
[12] 赵小琴, 贾瑞玲, 刘军秀, 刘彦明, 文殷花, 师丽丽, 张娟宁, 马宁. 120份谷子种质资源的农艺性状表现和遗传多样性分析[J]. 作物杂志, 2022, (6): 61–69
[13] 李志华, 穆婷婷, 李爱军. 生育进程相近的谷子杂交种两系亲本的选育及其杂种优势分析[J]. 作物杂志, 2022, (6): 75–81
[14] 史关燕, 王娟菲, 麻慧芳, 赵雄伟. 谷子杂交种产量与主要农艺性状的相关性及回归分析[J]. 作物杂志, 2022, (6): 82–87
[15] 陈士勇, 王锐, 陈志青, 张海鹏, 王娟娟, 单玉华, 杨艳菊. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022, (4): 107–114
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!