Crops ›› 2016, Vol. 32 ›› Issue (3): 21-26.doi: 10.16035/j.issn.1001-7283.2016.03.005

Previous Articles     Next Articles

Inheritance of Resistance to Race 4 of Cyst Nematode in Soybean

Zhang Haiping1,2,Wu Shufeng2,Wang Zhi2   

  1. 1Shanxi University,Taiyuan 030031,Shanxi,China
    2Institute of Crop Germplasm Resources,Shanxi Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau,Ministry of Agriculture,P.R.China/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement,Taiyuan 030031,Shanxi,China
  • Received:2016-04-13 Revised:2016-05-07 Online:2016-06-15 Published:2018-08-26

Abstract:

Soybean cyst nematode (SCN) is a destructive pest in soybean production worldwide and causes great yield loss every year. There are 14 SCN races worldwide, among which 8 races are in china. Race 4 of SCN (SCN4), which is the predominant race in Huang-Huai-hai soybean production area, has the most virulence. A soybean cultivar-CBL, which was isolated from Chibuliuheidou with high resistance to SCN, but its growth period was shorter than Chibuliuheidou. In this paper, genetic model of CBL was studied, which will help for cloning of resistant gene and resistant marker exploitation. Three generations (F1, F2, F2:3 ) were generated from the crosses between CBL and pin 75-14, which was a high susceptible to SCN4. Genetic model was analyzed by the method of mixed major gene plus polygene genetic model. The resistant inheritance to SCN4 was controlled by two additive-dominance-espistatic major genes and additive-dominance-espistatic polygenes. The F2 and F2:3 heritabilities of major genes were estimated to be 64.47% and 75.99%, respectively. So resistance plants can be selected in early filial generation.

Key words: Soybean, Soybean cyst nematode, Major gene plus polygene, Inheritance

Table 1

The SCN4 disease index of each generation"

世代
Generation
病情指数分布Disease level distribution(株) 总数
(株)
Total
平均病情指数(%)
Disease index
标准差
SD
0~
10%
10.1%~
20%
20.1%~
30%
30.1%~
40%
40.1%~
50%
50.1%~
60%
60.1%~
70%
70.1%~
80%
80.1%~
90%
90.1%~
100%
>100%
P1 10 10 192.85 8.14
P2 10 10 0.28 0.13
F1 1 9 10 117.66 16.76
F2 10 6 4 9 10 5 6 6 6 4 52 118 102.00 55.77
F2∶3 8 6 3 4 6 17 13 13 6 11 31 118 72.03 27.25

Table 2

Maximum likelihood values and AIC value of genentic models from resistance"

模型代码
Model code
模型
Model
极大似然值
Max likelihood value
AIC值
AIC value
A1 1MG-AD -4 039.66 8 087.326
A2 1MG-A -4 041.22 8 088.441
A3 1MG-EAD -4 040.94 8 087.885
A4 1MG-AEND -4 040.94 8 087.881
B1 2MG-ADI -3 785.66 7 591.325
B2 2MG-AD -3 890.82 7 793.635
B3 2MG-A -3 842.68 7 693.352
B4 2MG-EA -4 281.48 8 568.954
B5 2MG-AED -3 918.90 7 845.809
B6 2MG-EEAD -4 525.45 9 056.901
C0 PG-ADI -3 855.96 7 731.914
C1 PG-AD -3 924.15 7 862.299
D0 MX1-AD-ADI -3 814.41 7 648.811
D1 MX1-AD-AD -3 911.74 7 839.481
D2 MX1-A-AD -3 924.04 7 862.086
D3 MX1-EAD-AD -3 922.40 7 858.794
D4 MX1-AEND-AD -3 925.51 7 865.020
E0 MX2-ADI-ADI -3 777.41 7 586.823
E1 MX2-ADI-AD -3 779.71 7 587.411
E2 MX2-AD-AD -3 911.74 7 843.481
E3 MX2-A-AD -3 896.45 7 808.902
E4 MX2-EAED-AD -3 924.00 7 861.996
E5 MX2-AED-AD -3 880.57 7 777.141

Table 3

Fitness test results of models B1, E0 and E1"

模型Model 世代Generation U12 U22 U32 nW2 Dn
B1 P1 5.3455(0.0208) 21.3231(0.0000) 90.5607(0.0000) 8.4035(0.0121) 0.0096(1.0000)
P2 5.5307(0.0187) 21.6204(0.0000) 90.0765(0.0000) 8.4195(0.0122) 0.0096(1.0000)
F1 6.4420(0.0111) 24.9129(0.0000) 102.7199(0.0000) 9.4931(0.0166) 0.0086(1.0000)
F2 0.3390(0.5604) 1.3029(0.2537) 5.3397(0.0208) 3.1920(0.0002) 0.0042(1.0000)
F2∶3 1.1842(0.2765) 0.0000(0.9974) 17.8719(0.0000) 3.2920(0.0002) 0.0584(0.3824)
E0 P1 3.5646(0.0590) 18.2294(0.0000) 95.3780(0.1035) 8.2496(0.0115) 0.0096(1.0000)
P2 3.5646(0.0590) 18.2294(0.0874) 95.3780(0.5347) 8.2496(0.1215) 0.0096(1.0000)
F1 2.9674(0.0850) 18.6210(0.0000) 112.1310(0.0000) 9.1941(0.0153) 0.0086(1.0000)
F2 1.9975(0.1576) 2.2509(0.1335) 0.2782(0.5979) 3.5021(0.3253) 0.0042(1.0000)
F2∶3 0.0740(0.7855) 0.6536(0.4188) 18.3838(0.0000) 3.1149(0.0902) 0.0397(0.8372)
E1 P1 4.1602(0.0414) 19.3183(0.0000) 93.7310(0.0000) 8.3011(0.0117) 0.0096(1.0000)
P2 4.1602(0.0414) 19.3183(0.0000) 93.7310(0.0000) 8.3011(0.0117) 0.0096(1.0000)
F1 7.6119(0.0058) 26.7112(0.0000) 99.7542(0.0000) 9.5936(0.0170) 0.0086(1.0000)
F2 0.0866(0.7685) 0.3651(0.5457) 12.6517(0.0004) 3.1534(0.0002) 0.0042(1.0000)
F2∶3 1.2685(0.2600) 3.2737(0.0704) 8.2673(0.0040) 3.2366(0.0002) 0.0603(0.3435)

Table 4

Estimate of genentic parameter of fitted model"

一阶遗传参数
1st order genentic
parameter
估计值
Estimate
二阶遗传参数
2st order genentic
parameter
估计值Estimate
F2 F2∶3
m1(m) -50.12 σf2 2 255.52 518.02
m2 9.79 σmg2 4 092.64 1 640.26
m3 18.12 σpg2 1 737.52 0
m4 78.99 σp2 6 348.18 2 158.28
m5 22.92 σ2 518.02 518.02
da(d) 18.11 hmg2 64.47% 75.99%
db 18.43 hpg2 27.37% 0
ha(h) -14.51
hb 54.48
i 18.09
jab 55.18
jba -15.66
l -58.73
[1] 王敬强, 程大新, 宛煜嵩 , 等. 应县小黑豆对大豆孢囊线虫4号生理小种抗性的遗传分析. 中国农学通报, 2001,17(6):12-15.
[2] 刘维志, 段玉玺 .植物病原线虫学.北京:中国农业出版社, 2000.
[3] 孙漫红, 刘杏忠, 缪作清 . 大豆胞囊线虫病生物防治研究进展. 中国生物防治, 2000,16(3):136-141.
doi: 10.3321/j.issn:1005-9261.2000.03.010
[4] Konanani B , Liphadzi, Al-Khatib, et al. Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate -resistant cropping system. Weed Science, 2005,53:536-545.
doi: 10.1614/WS-04-129R1
[5] 许艳丽, 王丽芳, 战丽莉 .大豆胞囊线虫病研究进展(续一).大豆科技,2010(1):21-24.
[6] 卢为国, 盖钧镒, 李卫东 . 黄淮地区大豆胞囊线虫生理小种的抽样调查与研究. 中国农业科学, 2006,39(2):306-312.
doi: 10.3321/j.issn:0578-1752.2006.02.013
[7] Caldwell B E, Brim C A . Inheritance resistance of soybean to the Heterodera glycines. Agronomy Journal, 1960,52:633-636.
[8] 王树峰, 李卫东, 刘世涛 .应县小黑豆对大豆胞囊线虫( SCN)1号生理小种的抗性遗传分析.河南农业科学,2004(5):28-31.
doi: 10.3969/j.issn.1004-3268.2004.05.008
[9] Yue P, Sleper D A ,Rao-Arelli A P.Genetic analysis of resistance to soybean cyst nematode in PI438489B. Euphytica, 2000,116(2):181-186.
doi: 10.1023/A:1004054731652
[10] Hartwig E E, Epps J M . An additional gene for resistance to soybean cyst nematode Heterodera glycines. Phytopathology, 1970,60:584.
[11] Rao-Arelli A P, Anand S C, Wrather J A . Soybean resistance to soybean cyst nematode race 3 is conditioned by an additional dominant gene. Crop Science, 1992,32(4):862-864.
doi: 10.2135/cropsci1992.0011183X003200040005x
[12] Rao-Arelli A P . Inheritance of resistance to Heterodera glycines race 3 in soybean accessions. Plant Diseases, 1994,78(9):898-900.
doi: 10.1094/PD-78-0898
[13] Lu P, Shannon J G . Genetics of cyst nematode resistance in soybean PI467312 and PI507354. Euphytica, 2006,149(3):259-265.
doi: 10.1007/s10681-005-9073-4
[14] 刘维志, 洪权春, 刘哗 , 等. 中国小黑豆对大豆胞囊线虫3号生理小种的抗性遗传研究. 沈阳农业大学学报, 1996,27(1):31-34.
[15] 李莹, 李源萍, 张听艳 , 等. 大豆品种对孢囊线虫4号生理小种抗性的遗传研究. 大豆科学, 1996,15(3):191-196.
[16] 卢为国, 盖钧镒, 李卫东 . 大豆对胞囊线虫1号和4号生理小种抗性的遗传分析. 作物学报, 2006,32(5):650-655.
[17] Myers G O, Anand S C . Inheritance of resistance and genetic relationships among soybean plant introductions to race of soybean cyst nematode. Euphytica, 1991,55(3):197-201.
doi: 10.1007/BF00021239
[18] Vuong T D, Sleper D A, Shannon J G , et al. Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe ) in soybean PI 567516C. Theoretical and Applied Genetics, 2010,121(7):1253-66.
doi: 10.1007/s00122-010-1385-7
[19] Elston R C, Steward J . The analysis of quantitative trait for simple genetic models from parental,F1 and backcross data. Genetics, 1973,73(4):695-711.
[20] Elston R C . The genetic analysis of quantitative trait difference between two homozygouse lines. Genetics, 1984,108(3):733-744.
pmid: 6500262
[21] Knott S A, Haley C S, Thompson R . Methods of segregation analysis for animal breeding data,parameter estimates. Heredity, 1992,68(4):313-320.
doi: 10.1038/hdy.1992.45 pmid: 1563967
[22] Shoukri M M, Mclachlan G J . Paramtirc estimation in a mixture model with application to nuclear family data. Biometrics, 1994,50(1):128-139.
doi: 10.2307/2533203 pmid: 8086597
[23] 王建康, 盖钧镒 . 利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应. 遗传学报, 1997,24(5):432-440.
[24] 王建康, 盖钧镒 . 数量性状主-多基因混合遗传的P1、P2、F1、F2和F2∶3联合分析方法. 作物学报, 1998,24(6):651-659.
[25] 章元明, 盖钧镒, 张孟臣 . 利用P1、P2、F1、F2和F2∶3世代联合分离分析. 西南农业大学学报, 2000,22(1):6-9.
[26] 章元明, 盖钧镒 . 利用P1、P2、F1、F2和F2∶3家系五世代联合分离分析的拓展. 生物数学学报, 2002,17(3):363-368.
doi: 10.3969/j.issn.1001-9626.2002.03.018
[27] 盖钧镒, 章元明, 王健康 .植物数量性状遗传体系.北京:科学出版社, 2003.
[28] 卢为国, 袁道华, 李金英 , 等.大豆抗胞囊线虫基因不同世代遗传率的变化.河南农业科学,2010(2):24-27.
doi: 10.3969/j.issn.1004-3268.2010.02.006
[29] 张翠翠, 代帅帅, 张兴伟 , 等. 烤烟CMV抗性主基因+多基因混合遗传模型分析. 植物遗传资源学报, 2014,15(6):1278-1286.
doi: 10.13430/j.cnki.jpgr.2014.06.016
[30] 张允楠, 曹齐卫, 李立斌 , 等. 黄瓜叶面积的主+多基因混合遗传模型分析. 园艺学, 2015,42(5):897-906.
[31] 吴书峰, 王志, 乔治军 , 等. 大豆抗胞囊线虫4号生理小种转录组测序及分析. 农业生物技术学报, 2016,24(4):519-529.
doi: 10.3969/j.issn.1674-7968.2016.04.006
[32] Riggs R D, Schmitt D P . Complete characterization of the race scheme for Heterodera glycines. Joural of Nematology, 1988,20(3):392-395.
doi: 10.1016/0022-2011(88)90126-7 pmid: 19290228
[33] 王志, 张海平, 李原萍 .一种在大豆抗胞囊线虫研究中抗病植株移植方法.中国,专利号:201310592034.X.
[34] 刘兵 . 植物数量性状分离分析Windows软件包SEA的研制. 南京:南京农业大学, 2013.
doi: 10.7685/j.issn.1000-2030.2013.06.001
[35] 赵桂云, 王继安, 李文滨 , 等. 大豆抗食心虫主基因+多基因混合遗传模型的五世代联合分析. 大豆科学, 2014,33(8):301-304.
doi: 10.11861/j.issn.1000-9841.2014.03.0301
[36] Dias W P ,CamposV P,Kiihl R A S,et al.Genetic controln soybean of resistance to soybean cyst nematode race4+. Euphytica, 2005,145(3):321-329.
doi: 10.1007/s10681-005-1944-1
[1] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System [J]. Crops, 2018, 34(4): 114-120.
[2] Mingjun Zhang,Zhongfeng Li,Lili Yu,Jun Wang,Lijuan Qiu. Identification and Screening of Protein Subunit Variation Germplasm from Both Mutants and Natural Population in Soybean [J]. Crops, 2018, 34(3): 44-50.
[3] Jiani Zhu,Huiping Dai,Shuhe Wei,Genliang Jia,Dejing Chen,Jinjin Pei,Qing Zhang,Long Qiang. Effects of Applying Zn on the Growth and Zn Accumulation in Soybean at Flowering Stage [J]. Crops, 2018, 34(1): 152-155.
[4] Tianle Ma,Jianxin Zhang. Effects of Different Multiple Cropping Methods on Dry Matter Accumulation, Distribution and Yield of Summer Soybean [J]. Crops, 2018, 34(1): 156-159.
[5] Lina Li,Longguo Jin,Chuanxiao Xie,Changlin Liu. Determining Blind Samples of Transgenic Maize and Transgenic Soybean [J]. Crops, 2017, 33(6): 37-44.
[6] Zhimin Dong,Zhi Li,Jia Liu,Liang Chen,Zhigang Yi,Bo Wang,Baoquan Liu. Progress on Resistance to Frogeye Leaf Spot in Soybean [J]. Crops, 2017, 33(3): 1-5.
[7] Xuechao Zhou,Surong Ding,Yunshan Wei,Yanfang Zhou,Xue Wei,Rina Na,Feng Li. Evaluation of Adaptability of Different Vegetable Soybean Cultivars (Lines) in Chifeng Area [J]. Crops, 2017, 33(3): 44-48.
[8] Guoyong Ren,Wei Li,Lifeng Zhang,Caijie Wang,Haiying Dai,Jinlong Wang,Ran Xu,Yanwei Zhang. The Resistance to Soybean Cyst Nematode Race 1 of Transgenic Soybean with hrf2 Encoding HarpinXooc [J]. Crops, 2017, 33(3): 49-53.
[9] Xuli Zhang,Baolong Xing,Guimei Wang,Lili Yin. Effects of Planting Density on Agronomic Traits, Economic Traits and Yield of Soybean in North of Shanxi Province [J]. Crops, 2017, 33(3): 127-131.
[10] Xiting Zhang,Liwei Cao,Shucai Lü,Guoxing Chen,Yongji Wang,Shuhan Yu,Zhenping Gong. Effects of Bulk Density on Nitrogen Absorption and Yield of Soybean on Black Soil [J]. Crops, 2017, 33(3): 132-137.
[11] Yixin Tian,Fengju Gao. The Response of Growth and Dry Matter Accumulation and Distribution of High Protein Soybean to Plant Density [J]. Crops, 2017, 33(2): 121-125.
[12] Li Yan,Qiang Yang,Yupeng Shao,Dandan Li,Zhikun Wang,Wenbin Li. Cloning and Sequence Analysis of GmWRI1a Gene Promoter in Soybean [J]. Crops, 2017, 33(2): 51-58.
[13] Yu Gao,Yanchao Liu,Shusen Shi,Juan Cui,Jinfeng Xiong. Review on Soybean Thrips in China [J]. Crops, 2017, 33(1): 8-13.
[14] Haiyan Li,Deli Cai,Jingsheng Chen,Yuxi Duan,Lijie Chen,Yingyu Shang. The Influence of Resistant and Susceptible Soybean Germplasm on Growth Dynamic Changes of Soybean Cyst Nematode Race 3(SCN3) [J]. Crops, 2017, 33(1): 144-149.
[15] Qianxu Zhao,Xianrong Yue,Yunsheng Xia,Naiming Zhang,Fuzhao Nian,Yunqiang Yang,Yulin Ma. Effects of Arbuscular Mycorrhizal Fungus Inoculation on Growth and Nitrogen Utilization of Intercropped Maize and Soybean in Purple Soil under Facilitated Condition [J]. Crops, 2016, 32(5): 94-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .