Crops ›› 2019, Vol. 35 ›› Issue (4): 183-190.doi: 10.16035/j.issn.1001-7283.2019.04.028

Previous Articles     Next Articles

Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress

Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie   

  1. College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2019-03-25 Revised:2019-06-13 Online:2019-08-15 Published:2019-08-06
  • Contact: Pingyi Guo,Jie Guo

Abstract:

Drought is an important influence factor on the yield of foxtail millet. The drought-resistant foxtail millet variety Chigu 16 (M79) and its female parent Chigu 10 (E1) and male parent Chenggu 8 (H1) were used as test materials in this study. Natural drought treatment at the seedling stage was adopted and a control was set up. Leaves were taken off on the 6th day of drought treatment (soil moisture content was about 20%) for transcriptome sequencing. The physiochemical properties of genes were analyzed on ExPASY, and gene structures were detected on GSDS 2.0. A phylogenetic tree was constructed on MAGA 7.0, the transmembrane domain was predicted on TMHMM Server v. 2.0 and the secondary structure of proteins was predicted using SOPMA. It was found that the proteins encoded by the 8 cutin synthetic genes of foxtail millets were all hydrophilic, and the 8 genes were all acidic. After the drought stress treatment, the expressions of the 8 genes changed in different trends among M79, E1 and H1, and Seita.8G128800 and Seita.7G197000 were significantly upregulated. Four of the eight genes were homologous with corn genes, three of the eight genes were homologous with rice genes, and a part of coding proteins had a transmembrane domain. The cutin synthetic genes play a role in the drought response of foxtail millet, but their regulation mechanism is complex. Our findings provide theoretically underlie for further exploration into the relationship between foxtail millet cutin and drought resistance.

Key words: Foxtail millet, Cutin, Drought resistance, Bioinformatics analysis

Fig.1

Structure of cutin synthetic genes in foxtail millet"

Fig.2

Analysis of hydrophilicity and hydrophobicity of proteins encoded by cutin synthetic genes in forctail millet"

Table 1

Basic information of cutin synthetic genes in foxtail millet"

基因名称
Gene name
基因长度(bp)
Length of gene
CDS长度(bp)
Length of CDS
染色体
Chromosome
氨基酸数目
Number of amino acids
等电点
PI
分子量(Da)
Molecular weight
Seita.1G219200 2 276 1 590 1 529 4.83 187 041.49
Seita.8G128800 5 998 1 365 8 454 4.64 499 484.30
Seita.7G197000 1 629 1 629 7 542 4.86 134 851.34
Seita.1G237600 6 547 1 863 1 620 4.67 545 565.01
Seita.2G306800 3 599 1 509 2 502 4.83 299 516.29
Seita.6G138200 4 194 1 755 6 584 4.76 348 222.58
Seita.1G362700 3 031 1 881 1 626 4.75 253 210.31
Seita.6G244000 4 219 1 494 6 497 4.76 351 628.77

Fig.3

Cluster heatmap of differential expressions of cutin synthetic genes in M79, H1 and E1 after drought treatment"

Fig.4

The evolution tree of cutin synthetic genes in foxtail millet"

Fig.5

Transmembrane domain prediction of cutin synthetic genes in foxtail millet"

Table 2

Prediction of secondary structure of foxtail millet cutin synthetic gene protein %"

蛋白名称
Protein name
α螺旋
Alpha helix
β转角
Beta turn
无规则卷曲
Random coil
延伸链
Extended strand
Seita.1G219200 51.04 9.26 13.80 25.90
Seita.8G128800 40.62 9.27 31.35 18.76
Seita.7G197000 45.57 11.99 26.01 16.42
Seita.2G306800 50.60 7.97 24.90 16.53
Seita.6G138200 27.05 12.16 35.45 25.34
Seita.1G362700 45.05 7.19 29.39 18.37
Seita.6G244000 43.86 7.65 28.37 20.12
Seita.1G237600 42.26 8.71 28.23 20.81
[1] 陈雪娇, 张旭东, 韩治中 , 等. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献. 作物学报, 2018,44(7):1055-1066.
[2] Devos K M, Wang Z M, Beales J , et al. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theoretical and Applied Genetics, 1998,96(1):63-68.
[3] Jayaraman A, Puranik S, Rai N K , et al. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Molecular Biotechnology, 2008,40(3):241-251.
[4] Qi X, Xie S, Liu Y , et al. Genome-wide annotation of genes and RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Molecular Biology, 2013,83(4/5):459-473.
[5] Muthamilarasan M, Bonthala V S, Mishra A K , et al. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Functional & Integrative Genomics, 2014,14(3):531-543.
[6] 窦祎凝, 秦玉海, 闵东红 , 等. 谷子转录因子SiNAC18通过ABA信号途径正向调控干旱条件下的种子萌发. 中国农业科学, 2017,50(16):3071-3081.
[7] Muthamilarasan M, Khandelwal R, Yadav C B , et al. Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS ONE, 2014,9(10):e109920.
[8] Agarwal P K, Agarwal P, Reddy M K , et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 2006,25(12):1263-1274.
[9] 杨希文, 胡银岗 . 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析. 干旱地区农业研究, 2011,29(5):69-74.
[10] 赵晋锋, 余爱丽, 田岗 , 等. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013,39(2):360-367.
doi: 10.3724/SP.J.1006.2013.00360
[11] Mahajan S, Tuteja N . Cold,salinity and drought stresses:An overview. Archives of Biochemistry and Biophysics, 2005,444(6):139-158.
[12] 曾琼, 刘德春, 刘勇 . 植物角质层蜡质的化学组成研究综述. 生态学报, 2013,33(17):5133-5140.
doi: 10.5846/stxb201205260781
[13] 段瑞君, 王爱东, 陈国雄 . 植物角质层基因研究进展. 植物学报, 2017,52(5):637-651.
[14] 周玲艳, 姜大刚, 李静 , 等. 逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系. 作物学报, 2012,38(6):1115-1120.
doi: 10.3724/SP.J.1006.2012.01115
[15] 李娜 . 超表达AtNCED3基因对水稻叶片角质层蜡质的影响. 晋中:山西农业大学, 2015.
[16] 王莎 . OsWR2对水稻角质层的影响及下游基因的筛选. 长沙:湖南农业大学, 2017.
[17] Chen X, Goodwin S M, Boroff V L , et al. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 2003,15(5):1170-1185.
[18] Seo P J, Lee S B, Suh M C , et al. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011,23(7):1138-1152.
[19] Shi W, Cheng J, Wen X , et al. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). Peer Journal, 2018,6:e4752.
[20] Bennetzen J L, Schmutz J, Wang H , et al. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012,30(6):555-561.
[21] 尹恒 . 谷子干旱下的转录分析及耐旱基因的发掘. 大连:大连理工大学, 2014.
[22] 余爱丽, 赵晋锋, 王高鸿 , 等. 两个谷子CIPK基因在非生物逆境胁迫下的表达分析. 作物学报, 2016,42(2):295-302.
doi: 10.3724/SP.J.1006.2016.00295
[23] Aharoni A, Dixit S, Jetter R , et al. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis,alters cuticle properties,and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004,16(9):2463-2480.
[24] Oshima Y, Shikata M, Koyama T , et al. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Toreniafournieri. Plant Cell, 2013,25(5):1609-1624.
[25] Baker J, Steele C, Leon D . Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Molecular Biology, 1988,11(3):277-291.
[26] Sturaro M . Cloning and characterization of GLOSSY1,a maize gene involved in cuticle membrane and wax production. Plant Physiology, 2005,138(1):478-489.
[27] Nevo E . Consensus maps of cloned plant cuticle genes. Sciences in Cold and Arid Regions, 2010,2(6):465-476.
[28] Samuels L, Kunst L, Jetter R . Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annual Review of Plant Biology, 2008,59(1):683-707.
[1] Li Yanfang,Du Yanwei,Zhang Zheng,Wang Gaohong,Zhao Genyou,Zhao Jinfeng,Yu Aili. Establishment and Optimization of Agrobacterium Mediated Transformation System for Mature Embryo of Foxtail Millet [J]. Crops, 2019, 35(3): 73-79.
[2] Yanwei Du,Jinfeng Zhao,Gaohong Wang,Yanfang Li,Genyou Zhao,Xiaoguang Yan. Study of Lodging Resistance of Spring-Sowing Foxtail Millet in Maturity Stages [J]. Crops, 2019, 35(1): 141-145.
[3] Wang Xiaolin,Ji Xiaoling,Zhang Panpan,Zhang Xiong,Zhang Jing. Correlation Analysis between Aboveground Biomass Allocation and Grain Yield in Different Varieties of Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[4] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[5] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China [J]. Crops, 2018, 34(4): 42-47.
[6] Shuguang Wang,Yugang Shi,Huawei Shi,Yaping Cao,Daizhen Sun. Research on Relationship between Photosynthetic Characteristics and Drought Resistance in Spring Wheat [J]. Crops, 2017, 33(6): 23-29.
[7] Guolong Li,Yaqing Sun,Shiqin Shao,Yongfeng Zhang. Response of Antioxidant System to Drought Stress in Sugar Beet Leaves at Seedling Stage [J]. Crops, 2017, 33(5): 73-79.
[8] Wenwen Ji,Zeyan Zhang,Yaowen Zhang,Daizhen Sun. Identification of Drought Resistance of Adzuki Bean Germplasm Resources from Different Places in Budding Stage [J]. Crops, 2017, 33(3): 54-59.
[9] Xiaodong Dai,Cancan Zhu,Na Qin,Yufeng Yang,Yannan Wang,Guohong Yang,Bing Si,Shihui Liu,Junxia Li. Effects of Uniconazole and Plant Density on Yield and Its Relavent Components of Foxtail Millet [J]. Crops, 2017, 33(2): 104-108.
[10] Gouliang Song,Xiaolei Feng,Guangyu Fan,Gaolei Shi,Shuangdong Li,Feng Wang,Xiaoming Wang,Zhihai Zhao. Analysis of Parental Combining Ability of New Sterile Lines in Foxtail Millet [J]. Crops, 2017, 33(2): 44-50.
[11] Zhihua Li,Xiaolan Jing,Huixia Li,Gang Tian,Xin Liu,Tingting Mu. Safety and Weed Control Efficiency of Foxtail Millet Seedling Stage Herbicides [J]. Crops, 2017, 33(1): 150-154.
[12] Chang Xu,Jinghui Liu,Yanming Yang,Xue Bai,Bin Ma,Xinglong Zhang,Mengyuan Sun,Mengyu Zhang. Effects of Bacterial Manure and Nitrogen and Phosphorus Fertilizer Combination on Drought Resistance Physiological Indexes and Yield of Potato under Plastic-Mulching [J]. Crops, 2017, 33(1): 94-99.
[13] Tingting Mu,Huiling Du,Xiaolan Jing,Zhihua Li,Qi Guo,Gang Tian,Huixia Li,Zhang Liu. Effects of Exogenous Selenium on Yield Components and Selenium Content in Grain of Foxtail Millet [J]. Crops, 2017, 33(1): 73-78.
[14] Lijuan Zhao,Jinfeng Ma,Yandong Li,Xiangyu Li,Zhijiang Li,Hongmei Yuan,Wendong Guo. Mutagenic Effects of 60Co-γ-Ray Radiation on Dry Seeds of Foxtail Millet [J]. Crops, 2017, 33(1): 38-43.
[15] Xiaodong Dai,Xinzhi Xu,Cancan Zhu,Yufeng Yang,Na Qin,Yannan Wang,Chunyi Wang,Xiaoping Yang,Guohong Yang,Junxia Li. Study on the Effects of N P K Fertilizer in Foxtail Millet [J]. Crops, 2016, 32(5): 147-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[5] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .
[6] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review[J]. Crops, 2018, 34(4): 20 -27 .
[7] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[8] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[9] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .
[10] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings[J]. Crops, 2018, 34(4): 95 -101 .