Crops ›› 2020, Vol. 36 ›› Issue (1): 89-97.doi: 10.16035/j.issn.1001-7283.2020.01.015

Previous Articles     Next Articles

Evaluation of Effect of Biochar on Tobacco Yield and Nitrogen Use Efficiency in Mountain Slope Areas

Liu Meiju1,Li Jiangzhou2(),Ji Sigui2,Fan Miaomiao3,Gu Xinghui2,Zhang Limeng2,Zhang Jinwei4,Qu Xing5,Zhou Wenbing2,Lin Shan3   

  1. 1College of Resources and Environmental Sciences, Yunnan Agricultural University, Kunming 650201,Yunnan, China
    2Extension Center of Tobacco Production Technology, Yuxi Tobacco Company, Yuxi 653100,Yunnan, China
    3College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
    4Extension Center of Tobacco Production Technology, Yuxi Tobacco Company Jiangchuan Branch Company, Yuxi 652600, Yunnan, China
    5Extension Center of Tobacco Production Technology, Yuxi Tobacco Company Eshan Branch Company, Yuxi 653200, Yunnan, China
  • Received:2019-02-25 Revised:2019-10-17 Online:2020-02-15 Published:2020-02-23
  • Contact: Jiangzhou Li E-mail:25032719@qq.com

Abstract:

Due to the low content of soil organic matter and poor water and fertlizer holding capacity, tobacco yield is generally lower in mountain slope areas. Biochar can improve soil physicochemical properties and improve soil holding capacity. The effect of biochar to improve the tobacco yield and nitrogen use efficiency was investigated. Field experiments were conducted at three different locations with mountains slope areas and plain between mountain areas. The effects of 6 biochar addition levels (0, 4.5, 9.0, 13.5, 18.0, 22.5t/ha) on yield and economic value of tobacco leaves, main agronomic traits, nitrogen use efficienc,y and apparent loss were determined and calculated. The results showed that the yield and economic value of tobacco leaves were significantly lower in mountain slope areas than in plain between mountain areas. However, under the same biochar addition levels, the relative increase in tobacco yield and production value were significantly higher in mountain slope areas than in plain between mountain areas. Before biochar application rate reached 13.5t/ha, the tobacco yield and economic value were increased significantly with the increase of biochar application rates. Nitrogen uptake, agronomy and recovery rate were significantly higher in plain between mountain areas than in mountain slope areas. Compared with the control treatment without biochar, the relative increase rate of agronomy and recovery of nitrogen fertilizer were significantly higher in mountain slope areas than that of plain between mountain areas. With the increase of biochar addition, the N apparent loss was significantly reduced. Biochar application is more effective in the mountain slope areas than in plain between mountain areas, whereas, the suitable application rate is 13.5t/ha.

Key words: Topography, Biochar, Tobacco, Yield, Economic value, Nitrogen use efficiency

Table 1

Preceding crops, main soil physical and chemical properties in each experiment site"

地形
Topography
地点
Site
前茬作物
Preceding
crop
经度
Longtitude
纬度
Latitude
海拔(m)
Altitude
容重(g/cm3)
Bulk
density
pH 有机质(g/kg)
Organic
matter
无机氮
(mg/kg)
Mineral-N
有效磷
(mg/kg)
Olsen-P
速效钾
(mg/kg)
Available-K
山间平地植烟区
Plain between
mountain area
江川Jiangchuan 大白菜 102°43′42″ 24°21′02″ 1 743 1.36 6.3 16.2 23.6 49.2 244
峨山Eshan 菜豌豆 102°25′56″ 24°09′01″ 1 569 1.31 6.3 18.0 17.0 31.5 258
通海Tonghai 洋葱 102°27′46″ 24°06′54″ 1 827 1.35 6.4 16.5 13.2 34.2 306
平均Average 1 713 1.34a 6.3a 16.9a 17.9a 38.3a 269a
山坡地植烟区
Mountain slope area
江川Jiangchuan 大白菜 102°40′37″ 24°24′31″ 1 851 1.27 5.8 14.6 22.3 35.6 189
峨山Eshan 菜豌豆 102°03′41″ 24°10′26″ 1 950 1.22 6.5 14.9 18.1 46.5 262
通海Tonghai 洋葱 102°41′10″ 24°12′30″ 1 959 1.25 6.1 13.7 15.0 42.1 234
平均Average 1 920 1.25b 6.1a 14.4b 18.5a 41.4a 228a

Table 2

Results of two-factor analysis of variance (P value) for leaf yield and economic value between topography and biochar"

处理
Treatment
产量
Yield
产值
Economic value
单叶重
Weight per leaf
产量相对增幅
Relative increase in yield
产值相对增幅
Relative increase in economic value
地形Topography 0.001 0.001 0.001 0.001 0.001
生物炭Biochar 0.001 0.001 0.001 0.001 0.058
地形×生物炭Topography×Biochar 0.3529 0.4662 0.1818 0.1272 0.3920

Fig.1

Effects of topography (n=54) and biochar (n=18)on yield and economic value in tobacco "***" indicate statistically significant difference between mountain slope areas and plain between mountain areas at 0.001 probability level; bars labeled with the different lowercase letters indicate significant difference (P<0.05) between biochar treatments. The same below"

Fig.2

Effects of topography (n=45) and biochar (n=9) on relative increase of yield and economic value in tobacco "*", "**" indicate statistically significant difference between mountain slope areas and plain between mountain areas at 0.05, 0.01 probability level; ns indicate no significant. The same below"

Fig.3

Effects of topography (n=54) and biochar (n=18) on weight per leaf and relative increase (n=9)"

Table 3

Results of two-factor analysis of variance (P value) for agronomic traits at different stages between topography and biochar"

性状Trait 团棵期Rosette 旺长期Vigorous 打顶期Topping
地形
Topography
生物炭
Biochar
地形×生物炭
Topography×
Biochar
地形
Topography
生物炭
Biochar
地形×生物炭
Topography×
Biochar
地形
Topography
生物炭
Biochar
地形×生物炭
Topography×
Biochar
株高Plant height 0.0001 0.0603 0.7898 0.0001 0.0645 0.9582 0.0001 0.0080 0.9168
茎粗Stem diameter 0.0562 0.9932 0.9955 0.0001 0.8941 0.9723 0.0001 0.2915 0.9751
叶片数Number of leaf 0.0025 0.9389 0.9925 0.0001 0.3915 0.9855 0.0001 0.0105 0.3782
叶面积指数Leaf area index 0.0001 0.9737 0.9955 0.0001 0.4979 0.9990 0.0001 0.0002 0.9470

Table 4

Results of two-factor analysis of variance (P value) for nitrogen uptake and agronomic use efficiency between topography and biochar"

处理
Treatment
氮素吸收量
Nitrogen uptake
氮肥农学利用率
Nitrogen agronomic use efficiency
氮肥回收利用率
Nitrogen fertilizer recovery efficiency
氮素表观损失
N apparent loss
地形Topography 0.001 0.001 0.001 0.001
生物炭Biochar 0.001 0.001 0.027 0.001
地形×生物炭Topography×Biochar 0.5718 0.9724 0.9272 0.5032

Fig.4

Effects of topography (n=18) and biochar (n=6) on nitrogen uptake amount and relative increase (n=3)"

Fig.5

Effects of topography (n=54) and biochar (n=18) on nitrogen use efficiency and recovery efficiency and relative increase (n=3)"

Fig.6

Effects of topography (n=18) and biochar (n=6) on N apparent loss"

[1] 雷永和 . 玉溪烤烟的辉煌与展望——写在“云烟之乡”获誉周年之际. 西南农业学报,2014(17):417-420.
[2] 云南统计年鉴编辑委员会. 云南农业年鉴. 昆明: 中国统计出版社, 2017.
[3] 李明海, 任远伦, 詹蓉晖 , 等. 不同海拔高度和土壤类型对烟叶产量质量的影响. 中国烟草科学, 1997,18(3):27-30.
[4] 李峥, 张保全, 杨双剑 , 等. 不同类型土壤对烤烟感官质量的影响. 昆明学院学报, 2018,40(3):27-33.
[5] Watts C, Clark L, Poulton P , et al. The role of clay,organic C and long-term management on mouldboard plough draught measured on the broadbalk wheat experiment at Rothamsted. Soil Use Manage, 2006,22(4):334-341.
[6] Powlson D S, Gregory P J, Whalley W R , et al. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy, 2011,36(S1):72-87.
[7] Lal R . Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304:1623-1627.
[8] 邱学礼, 郑波, 鲁耀 , 等. 玉米秸秆碳氮比调控施用对烟叶氮磷钾吸收的影响. 西北农业学报, 2012,21(8):125-129.
[9] 陈颖, 刘玉学, 陈重军 , 等. 生物炭对土壤有机碳矿化的激发效应及其机理研究进展. 应用生态学报, 2018,29(1):314-320.
[10] Antal M J, Gronli M . The art,science,and technology of charcoal production. Industrial and Engineering Chemistry Research, 2003,42(8):1619-1640.
[11] Piccolo A, Pietramellara G, Mbagwu J S C . Effect of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use and Management, 1996,12(4):209-213.
[12] Marris E . Putting the carbon back:black is the new green. Nature, 2006,442:624-626.
[13] 孔丝纺, 姚兴成, 张江勇 , 等. 生物质炭的特性及其应用的研究进展. 生态环境学报, 2015,24(4):716-723.
[14] Lehman J, Da Silva J P, Rondon M ,et al. Slash-and-char:A feasible alternative for soil fertility management in the Central Amazon?. 17 th World Congress of Soil Science, Thailand, 2002: 14-21.
[15] 张星, 刘杏认, 张晴雯 , 等. 生物炭和秸秆还田对华北农田玉米生育期土壤微生物量的影响. 农业环境科学学报, 2015,34(10):1943-1950.
[16] Singh B P, Cowie A L, Smernik R J . Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environmental Science and Technology, 2012,46(21):11770-11778.
[17] Steiner C, Arrudamr D E, Teixeira W G , et al. Soil respiration curves as soil fertility indicators in perennial central Amazonian plantations treated with charcoal,and mineral or organic fertilizers. Tropical Science, 2008,47(4):218-230.
[18] 花莉, 张成, 马宏瑞 , 等. 秸秆生物质炭土地利用的环境效益研究. 生态环境学报, 2010,19(10):2489-2492.
[19] 高德才, 张蕾, 刘强 , 等. 旱地土壤施用生物炭减少土壤氮损失及提高氮素利用率. 农业工程学报, 2014,30(10):54-61.
[20] 张晗芝, 黄云, 刘钢 , 等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报, 2010,19(11):2713-2717.
[21] 张爱平, 刘汝亮, 高霁 , 等. 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响. 植物营养与肥料学报, 2015,21(5):1352-1360.
[22] 马莉, 侯振安, 吕宁 , 等. 生物碳对小麦生长和氮素平衡的影响. 新疆农业科学, 2012,49(4):589-594.
[23] 潘逸凡, 杨敏, 董达 , 等. 生物质炭对土壤氮素循环的影响及其机理研究进展. 应用生态学报, 2013,24(9):2666-2673.
[24] 王卫民, 张保全, 程昌合 , 等. 根区穴施生物炭对烤烟生长及养分吸收的影响. 湖北农业科学, 2018,57(3):32-35,70.
[25] 代快, 计思贵, 张立猛 , 等. 生物炭对云南典型植烟土壤持水性及烤烟产量的影响. 中国土壤与肥料,2017(4):44-51.
[26] 邢光辉, 典瑞丽, 陈光辉 , 等. 施用生物炭对烤烟根系生长和经济性状的影响. 作物研究, 2016,30(5):549-554.
[27] 李江舟, 代快, 张立猛 , 等. 施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响. 环境科学学报, 2016,36(6):2114-2120.
[28] 鲍士旦 , 土壤农化分析. 北京: 中国农业出版社, 1999.
[29] Xu G H, Fan X R, Miller A J . Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012,63:153-182.
[30] Lehmann J . A handful of carbon. Nature, 2007,447:143-144.
[31] 陈盈, 张满利, 刘宪平 , 等. 生物炭对水稻齐穗期叶绿素荧光参数及产量构成的影响. 作物杂志,2016(3):94-98.
[32] 代舟, 孟军, 田晓翠 , 等. 生物炭对东北酸性土养分含量、酶活性及大豆产量的影响. 黑龙江八一农垦大学学报, 2016,28(4):1-5.
[33] 刘明, 来永才, 李炜 , 等. 生物炭与氮肥施用量对大豆生长发育及产量的影响. 大豆科学, 2015,34(1):87-92.
[34] 刘明, 来永才, 李炜 , 等. 生物炭对玉米物质生产及产量的影响. 作物杂志,2015(3):133-138.
[35] 孙大荃, 孟军, 张伟明 , 等. 生物炭对棕壤大豆根际微生物的影响. 沈阳农业大学学报, 2011,42(5):521-526.
[36] 刘新源, 刘国顺, 刘宏恩 , 等. 生物炭施用量对烟叶生长、产量和品质的影响. 河南农业科学, 2014,43(2):58-62.
[37] 叶协锋, 李志鹏, 于晓娜 , 等. 生物炭用量对植烟土壤碳库及烤后烟叶质量的影响. 中国烟草学报, 2015,21(5):33-41.
[38] 薛超群, 杨立均, 王建伟 . 生物质炭用量对烤烟烟叶净光合速率和香味物质含量的影响. 烟草科技, 2015,48(5):19-22.
[39] 唐光木, 葛春辉, 徐万里 , 等. 施用生物黑炭对新疆灰漠土肥力与玉米生长的影响. 农业环境科学学报, 2011,30(9):1797-1802.
[40] Noguera D, Rondón M, Laossi K R , et al. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology and Biochemistry, 2010,42:1017-1027.
[41] 陈敏, 杜相革 . 生物炭对土壤特性及烟草产量和品质的影响. 中国土壤与肥料,2015(1):80-83.
[42] 刘卉, 周清明, 黎娟 , 等. 生物炭施用量对土壤改良及烤烟生长的影响. 核农学报, 2016,30(7):1411-1419.
[43] 张弘, 李影, 张玉军 , 等. 生物炭对植烟土壤氮素形态迁移及微生物量氮的影响. 中国水土保持科学, 2017,15(3):26-34.
[44] 葛少华, 丁松爽, 杨永锋 , 等. 生物炭与化肥氮配施对土壤氮素及烤烟利用的影响. 中国烟草学报, 2018,24(2):84-92.
[1] Lei Pan,Jie Xu,Shuai Yang,Yunsong Chen,Lianhong Chen,Wenguang Ma. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures [J]. Crops, 2020, 36(2): 112-118.
[2] Hua Yan,Zhongwen Yan,Jie Lei. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[3] Hongtao Shen,Fusheng Zhang,Dong Li,Jianhua Qiu,Xinghong Cai,Yubao Qin. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[4] Tianwen Wang,Changzhong Li,Guanghai Chen. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[5] Ruijie Li,Huihui Tang,Qingyan Wang,Yanli Xu,Mengying Fang,Peng Yan,Zhiqiang Dong,Fenglu Zhang. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[6] Diwen Chen,Wenling Zhou,Junhua Ao,Ying Huang,Yong Jiang,Xihong Han,Yimin Qin,Hong Shen. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[7] Wei Zhou,Fuzhu Cui,Hongkai Duan,Guohua Hao,Hui Yang,Ruirui Liu. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[8] Yue Chen,Hulin Li,Shimiao Zhu,Han Yan,Bin Lang,Wenxiu Ji. Isolation and Identification of IAA - Producing Rhizobacteria and Its Effects on Seed Germination and Seedling Growth of Tobacco [J]. Crops, 2020, 36(2): 176-181.
[9] Yegeng Fan,Haifeng Yan,Rongfa Chen,Lihang Qiu,Huiwen Zhou,Xing Huang,Mengling Weng,Jianming Wu,Yangrui Li,Shengman Wei. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
[10] Xin Liu,Rong Zhu,Mei Yang,Zhangyong Liu. Screening of High-Yield Germplasms for Ratoon Rice and Analysis of High Yield Composition [J]. Crops, 2020, 36(2): 28-33.
[11] Weixing Liu,Qunling He,Fengye Zhang,Xiaoyu Fan,Lei Chen,Ke Li,Jihua Wu. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[12] Zhichang Yang,Tao Shen,Zhuo Luo,Zhi Peng,Yuqian Hu,Tao Zi,Tinghao Xiong,Haixing Song. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[13] Tianxin Chen,Yanjie Wang,Yan Zhang,Xuhong Chang,Zhiqiang Tao,Demei Wang,Yushuang Yang,Yingjie Zhu,Akang Liu,Shubing Shi,Guangcai Zhao. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[14] Bo Zhang,Tiantian Gao,Hongbo Cheng,Rui Li,Yuwei Chai,Yawei Li,Shouxi Chai. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[15] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Analysis of the Characteristics of Dry Matter Production and Light Energy Utilization of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2020, 36(1): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[4] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[5] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[6] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[7] Jie Wang,Bo Zeng,Cailin Lei,Zhichao Zhao,Jiulin Wang,Zhijun Cheng. Variety Analysis of Northern Rice Regional Trials in Recent 15 Years[J]. Crops, 2018, 34(1): 71 -76 .
[8] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[9] . [J]. Crops, 2010, 26(6): 15 -19 .
[10] . [J]. Crops, 2012, 28(4): 16 -19 .