Crops ›› 2025, Vol. 41 ›› Issue (1): 220-226.doi: 10.16035/j.issn.1001-7283.2025.01.028

;

Previous Articles     Next Articles

Study on Strategies of Growth and Phosphorus Uptake of Chinese Cabbage at Different Phosphorus Supply Levels

Hou Saisai1(), Li Chang1, Li Qingyun2, Wang Xinxin3,4,5()   

  1. 1College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
    2College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei, China
    3National Research Center of Agricultural Engineering Technology in Northern Mountainous Areas, Baoding 071001, Hebei, China
    4Hebei Mountainous Agricultural Technology Innovation Center, Baoding 071001, Hebei, China
    5Hebei Institute of Mountainous Areas, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2023-05-25 Revised:2023-07-21 Online:2025-02-15 Published:2025-02-12

Abstract:

As an essential nutrient element for plant growth, phosphorus (P) plays an important role in plant growth and metabolism. The P supply level affects soil P concentration and plant P uptake, and is also an important factor limiting plant growth. The effects of P supply levels (0, 2.5, 5, 10, 25, 50, 100, 150, 300, 600, 900, 1200 mg/kg, represented by P0, P2.5, …, P1200, respectively) on the growth of Chinese cabbage (Brassica pekinensis Rupr.) and phosphorus absorption strategy were investigated. The results showed that P supply levels significantly affected the growth of shoot and root traits, dry matter accumulation and P uptake of Chinese cabbage. The maximum plant height and stem diameter of Chinese cabbage were at P150 and P900, respectively. With the increase of P supply level, the dry weight of the shoot increased from 0.47 g to 2.24 g, and the dry weight of the root increased from 0.06 g to 0.23 g. P concentrations in shoot and root increased by 197.9% and 203.7%, respectively. Root traits such as root length, root surface area and root diameter increased firstly, and then decreased with the increase of P supply level. In conclusion, in our experiment, when applyed 150-300 mg/kg of phosphorus, the overall growth characteristics of Chinese cabbage was the highest, which was the most beneficial to the growth and development of Chinese cabbage. At low P supply levels, Chinese cabbage increased P uptake by enhancing root development. However, when the P concentration is too high, plants will weaken root growth, so as to reduce the P acquisition in soil.

Key words: Chinese cabbage, Phosphorus, Phosphorus uptake, Growth strategy, Root traits

Table 1

Effects of phosphorus supply levels on phosphorus absorption of B. pekinensis Rupr."

处理
Treatment
地上部干重
Shoot dry
weight (g)
根部干重
Root dry
weight (g)
地上部磷浓度
Shoot P
concentration
(mg/kg)
根部磷浓度
Root P
concentration
(mg/kg)
P0 0.63±0.08ef 0.06±0.03e 0.98±0.12d 0.82±0.06g
P2.5 0.47±0.17f 0.09±0.05de 1.06±0.08d 1.18±0.09f
P5 0.76±0.31def 0.13±0.04bcde 1.38±0.21cd 1.26±0.06ef
P10 1.15±0.23cd 0.14±0.05bcde 1.48±0.12c 1.42±0.10e
P25 1.21±0.44cd 0.12±0.06cde 1.54±0.16c 1.65±0.08d
P50 1.09±0.34cde 0.08±0.03e 1.69±0.16bc 1.68±0.06d
P100 1.52±0.42bc 0.10±0.06de 1.97±0.26b 1.71±0.15d
P150 2.24±0.26a 0.20±0.06abc 2.08±0.20b 1.73±0.12d
P300 2.23±0.59a 0.23±0.10a 2.58±0.78a 1.95±0.13c
P600 1.98±0.76ab 0.17±0.13abcd 2.80±0.58a 2.08±0.09bc
P900 2.20±0.10a 0.21±0.04ab 2.92±0.26a 2.21±0.30b
P1200 1.76±0.28ab 0.13±0.05bcde 2.88±0.14a 2.49±0.09a

Fig.1

Effects of phosphorus supply levels on shoot traits of B. pekinensis Rupr. Different lowercase letters indicate the significant differences (P < 0.05). The same below."

Fig.2

Effects of shoot phosphorus concentration on shoot traits of B. pekinensis Rupr."

Fig.3

Effects of phosphorus supply levels on root traits and rhizosphere soil pH of B. pekinensis Rupr."

Table 2

Univariate variance analysis of effects of phosphorus supply levels on growth and root characteristics of B. pekinensis Rupr."

指标
Index
F
F-value
P
P-value
株高Plant height 18.52 <0.001
茎粗Stem diameter 5.82 <0.001
根长Root length 270.47 <0.001
根表面积Root surface area 43.61 <0.001
根直径Root diameter 3.32 0.002
根体积Root volume 8.59 <0.001
根冠比Root-shoot ratio 41.59 <0.001
根际土壤pH Rhizosphere soil pH 8.76 <0.001
地上部干重Shoot dry weight 14.10 <0.001
根部干重Root dry weight 3.512 0.001
地上部磷浓度Shoot P concentration 23.49 <0.001
根部磷浓度Root P concentration 68.08 <0.001

Table 3

Pearson correlation analysis of growth traits and phosphorus absorption in B.pekinensis Rupr."

指标
Index
株高
Plant
height
茎粗
Stem
diameter
根长
Root
length
根表面积
Root
surface
area
根直径
Root
diameter
根体积
Root
volume
根冠比
Root-
shoot
ratio
根际土
壤pH
Rhizosphere
soil pH
地上部
干重
Shoot
dry weight
根部
干重
Root dry
weight
地上部
磷浓度
Shoot P
concentration
根部
磷浓度
Root P
concentration
株高Plant height 1.00
茎粗Stem diameter 0.51** 1.00
根长Root length 0.81** 0.57** 1.00
根表面积Root surface area 0.59** 0.66** 0.75** 1.00
根直径Root diameter 0.51** 0.45** 0.55** 0.50** 1.00
根体积Root volume 0.30* 0.44** 0.46** 0.70** 0.25 1.00
根冠比Root-shoot ratio -0.57** -0.34** -0.48** -0.14 -0.26* -0.06 1.00
根际土壤pH
Rhizosphere soil pH
0.30* 0.15 0.21 0.16 -0.07 0.29* -0.08 1.00
地上部干重Shoot dry weight 0.76** 0.80** 0.84** 0.70** 0.53** 0.43** -0.45** 0.28* 1.00
根部干重Root dry weight 0.46** 0.54** 0.55** 0.60** 0.43** 0.52** 0.07 0.18 0.70** 1.00
地上部磷浓度
Shoot P concentration
0.75** 0.60** 0.79** 0.68** 0.63** 0.37** -0.44** -0.02 0.72** 0.49** 1.00
根部磷浓度
Root P concentration
0.72** 0.55** 0.73** 0.63** 0.58** 0.15 -0.49** -0.07 0.69** 0.37** 0.82** 1.00

Fig.4

Principal component analysis of growth characteristics of B. pekinensis Rupr. under different phosphorus supply levels"

[1] Fukushima A, Iwasa M, Iwasa M, et al. Effects of combined low glutathione with mild oxidative and low phosphorus stress on the metabolism of Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8:1464.
doi: 10.3389/fpls.2017.01464 pmid: 28894456
[2] 鲁如坤. 土壤磷素水平和水体环境保护. 磷肥与复肥, 2003(1):4-8.
[3] Johnston A E, Poulton P R, Fixen P E, et al. Phosphorus: Its efficient use in agriculture. Advances in Agronomy, 2014, 123:177-228.
[4] 刘小龙, 张新疆, 危常州, 等. 不同磷水平土壤上磷启动肥对玉米生长效应的研究. 中国土壤与肥料, 2022(10):156-162.
[5] 麻仲花, 陈娟, 吴娜, 等. 盐胁迫与供磷水平对柳枝稷苗期光合特性与总生物量的影响. 中国农业科技导报, 2023, 25(6):190-200.
[6] 刘选帅, 孙延亮, 安晓霞, 等. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响. 草业学报, 2023, 32(3):189-199.
doi: 10.11686/cyxb2022081
[7] 陈洁, 南丽丽, 汪堃, 等. 低磷胁迫对红豆草光合、叶绿素荧光及内源激素的影响. 草地学报, 2023, 31(1):112-119.
doi: 10.11733/j.issn.1007-0435.2023.01.013
[8] Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: From soil to plant. Plant Physiology, 2011, 156(3):997-1005.
doi: 10.1104/pp.111.175232 pmid: 21571668
[9] 温智辉. 作物根系高效获取土壤磷策略的权衡与协同机制. 北京: 中国农业大学, 2020.
[10] Hernández G, Ramírez M, Valdés-López O, et al. Phosphorus stress in common bean: Root transcript and meta bolicresponses. Plant Physiology, 2007, 144(2):752-767.
doi: 10.1104/pp.107.096958 pmid: 17449651
[11] Wang X X, Li H B, Chu Q, et al. Mycorrhizal impacts on root trait plasticity of six maize varieties along a phosphorus supply gradient. Plant and Soil, 2020, 488(1/2):71-86.
[12] Galindo C T, Lynch J P, Six J, et al. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Frontiers in Plant Science, 2022, 13:827369.
[13] Raghothama K G, Karthikeyan A S. Phosphate acquisition. Plant and Soil, 2005, 274(1/2):37-49.
[14] 李刚, 张祥池, 李诚, 等. 不同供磷水平对小麦苗期干旱胁迫适应性的影响. 麦类作物学报, 2023, 43(1):91-101.
[15] Jones D L, Nguyen C, Finlay R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 2009, 321(1/2):5-33.
[16] 廖文华, 刘建玲, 黄欣欣, 等. 潮褐土上蔬菜产量和土壤各形态磷变化对长期过量施磷的响应. 植物营养与肥料学报, 2017, 23(4):894-903.
[17] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[18] Jones C A. A survey of the variability in tissue nitrogen and phosphorus concentrations in maize and grain-sorghum. Field Crops Research, 1983, 6(2):133-147.
[19] 李海叶, 黄少欣, 朱东宇, 等. 云南中、低供磷能力土壤玉米最佳施磷量研究. 植物营养与肥料学报, 2022, 28(6):1039-1046.
[20] 张海伟, 徐芳森. 不同磷水平下甘蓝型油菜光合特性的基因型差异研究. 植物营养与肥料学报, 2010, 16(5):1196-1202.
[21] 袁继存, 赵德英, 徐锴, 等. 不同磷水平对“锦丰”梨光合及叶绿素荧光特性的影响. 北方园艺, 2019(6):65-68.
[22] 冯磊, 刘世琦, 成波, 等. 不同水培磷素水平对大蒜产量、光合特性和品质的影响. 中国土壤与肥料, 2014(3):38-43.
[23] 萧浪讨, 王三根. 植物生理学. 北京: 中国农业出版社, 2004.
[24] 许大全. 光合作用学. 北京: 科学出版社, 2013.
[25] 季萌萌, 许海港, 彭玲, 等. 低磷胁迫下五种苹果砧木的磷吸收与利用特性. 植物营养与肥料学报, 2014, 20(4):974-980.
[26] Ao J, Fu J, Tian J, et al. Genetic variability for root morph- architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Functional Plant Biology, 2010, 37(4):304-312.
[27] 蒲子天, 张弛, 张佳崎, 等. 供磷水平对苗期小麦地上和地下部性状关联性的影响. 植物营养与肥料学报, 2022, 28(9):1594-1602.
[28] Deng Y P, Men C B, Qiao S F, et al. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth. The Crop Journal, 2020, 8(4):534-547.
[29] Wen Z H, Li H B, Shen Q, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus‐acquisition strategies of 16 crop species. New Phytologist, 2019, 223(2):882-895.
[30] Shen Q, Wen Z H, Dong Y, et al. The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration. An Open-Access Journal for Environmental and Evolutionary Plant Biology, 2018, 10(5):54.
[1] Lei Yun, Liu Yueyan, Wang Jianjian. Effects of CO2 Enrichment and Phosphorus Level on Seedling Growth and Nutrient Element Absorption of Capsicum anmuum L. [J]. Crops, 2025, 41(2): 189-195.
[2] Yang Xinyue, Xiang Ying, Chen Ziheng, Lin Qian, Deng Zhenpeng, Zhou Keyou, Li Mingcong, Wang Jichun. Effects of Organic Matter Application Rate on Yield and Nitrogen, Phosphorus and Potassium Nutrient Absorption and Utilization in Potato [J]. Crops, 2024, 40(6): 153-161.
[3] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[4] Hao Yani, Pei Hongbin, Gao Zhenfeng, Zhang Yijun, Yang Zhenping. Effects of Bacillus vallismortis and Straw Replacing Phosphorus Fertilizer on Growth, Yield and Quality of Tartary Buckwheat [J]. Crops, 2024, 40(1): 204-213.
[5] Pan Junfeng, Liu Yanzhuo, Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua, Li Meijuan, Hu Rui. Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China [J]. Crops, 2022, 38(5): 241-248.
[6] Meng Fan, Luo Jianxin, Cai Ye, Yu Ying, Yang Lei, Zhou Wanchun. Effects of Soil Available Phosphorus on Tobacco Growth and Dry Matter Accumulation and Distribution [J]. Crops, 2022, 38(2): 203-210.
[7] Zhang Ting, Zhang Bowen, Li Guolong, Cao Yang, Li Yue, Zhang Shaoying. Effects of Phosphorus Application Rate and Method on Photosynthetic Performance and Yield of Sugar Beet [J]. Crops, 2021, 37(5): 187-193.
[8] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[9] Suo Yanyan, Zhang Xiang, Si Xianzong, Li Liang, Yu Qiong, Yu Hui. Effects of Phosphorus and Calcium Applications on the Growth, Yield, and Phosphorus and Calcium Use Efficiency of Peanut [J]. Crops, 2021, 37(1): 187-192.
[10] Huang Shaohui, Yang Junfang, Liu Xuetong, Yang Yunma, Xing Suli, Han Baowen, Liu Mengchao, Jia Liangliang, He Ping. Effects of Wheat Long-Term Straw Returning on Soil Phosphorus Content and Phosphorus Balance in Loamy Tidal Soil [J]. Crops, 2020, 36(6): 89-96.
[11] Hao Xiyu, Xiao Huanyu, Liang Jie, Wang Yingjie, Guo Wenyun. Effects and Optimum Rates of Nitrogen, Phosphorus and Potassium Fertilizer for Mung Bean [J]. Crops, 2020, 36(5): 127-132.
[12] Gao Wenjun,Yang Guoyi,Gao Xinzhong,Yu Zhu,Xu Qingfang,Yuan Xiangyang,Sun Yaowu. The Effects of Nitrogen, Phosphorus, or Potassium Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[13] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review [J]. Crops, 2018, 34(4): 20-27.
[14] Chunhua Pang,Shifang Yang,Yongqing Zhang,Yanhong Hua,Xiao He,Yang Yang. Effects of Inoculating Arbuscular Mycorrhizal Fungi on Growth of Quinoa under Different Phosphorus Levels [J]. Crops, 2017, 33(6): 131-139.
[15] Xudong Gu,Yang Meng,Wenshou He. Effects of Interplanting Faba Bean on Accumulation of Dry Matter, Nitrogen, and Phosphorus of Potato [J]. Crops, 2017, 33(3): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .