作物杂志,2024, 第4期: 813 doi: 10.16035/j.issn.1001-7283.2024.04.002
顾怀应1,2(), 胡诗钦1,2, 赵晴1,2, 刘长华1(), 孟丽君2()
Gu Huaiying1,2(), Hu Shiqin1,2, Zhao Qing1,2, Liu Changhua1(), Meng Lijun2()
摘要:
土壤盐碱化对植物的生长发育造成不利影响,因而对水稻等盐敏感作物会造成严重的产量损失。随着对土壤中微生物认识的不断加深,根际微生物组在增加水稻耐盐性方面的能力已经得到证实。本文介绍了利用多组学研究微生物与水稻互作的概况、增强水稻耐盐性的根际微生物组以及盐胁迫下微生物增强水稻耐盐性的生理机制,并展望了微生物利用的研究方向,为揭示微生物增强水稻耐盐性的机理提供参考,为提高盐碱环境下水稻产量提供新的思路和方法。
[1] | Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2):313-324. |
[2] | Ponce K S, Guo L, Leng Y, et al. Advances in sensing, response and regulation mechanism of salt tolerance in rice. International Journal of Molecular Sciences, 2021, 22(5):2254. |
[3] | 翟彩娇, 张蛟, 崔士友, 等. 盐逆境下缓/控释肥对水稻生长发育,产量和品质的影响. 作物杂志, 2023(1):143-151. |
[4] |
Nam M H, Bang E, Kwon T Y, et al. Metabolite profiling of diverse rice germplasm and identification of conserved metabolic markers of rice roots in response to long-term mild salinity stress. International Journal of Molecular Sciences, 2015, 16(9):21959-21974.
doi: 10.3390/ijms160921959 pmid: 26378525 |
[5] | 郭望模, 傅亚萍, 孙宗修, 等. 盐胁迫下不同水稻种质形态指标与耐盐性的相关分析. 植物遗传资源学报, 2003, 4(3):245-251. |
[6] |
Mhlongo M I, Piater L A, Madala N E, et al. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Frontiers in Plant Science, 2018, 9:112.
doi: 10.3389/fpls.2018.00112 pmid: 29479360 |
[7] |
张燕红, 杜孝敬, 康民泰, 等. 不同盐浓度下外源微生物菌对水稻生长发育及产量的影响. 新疆农业科学, 2022, 59(12):2988-2996.
doi: 10.6048/j.issn.1001-4330.2022.12.014 |
[8] |
Álvarez-Pérez S, Lievens B, Fukami T. Yeast-bacterium interactions: the next frontier in nectar research. Trends in Plant Science, 2019, 24(5):393-401.
doi: S1360-1385(19)30027-5 pmid: 30792076 |
[9] |
Zhong Y, Xun W B, Wang X H, et al. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. Nature Plants, 2022, 8(8):887-896.
doi: 10.1038/s41477-022-01201-2 pmid: 35915145 |
[10] | Kwak M J, Kong H G, Choi K, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36(11):1100-1109. |
[11] | Durán P, Thiergart T, Garrido-Oter R, et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell, 2018, 175(4):973-983. |
[12] |
Liu H, Brettell L E, Qiu Z, et al. Microbiome-mediated stress resistance in plants. Trends in Plant Science, 2020, 25(8):733-743.
doi: S1360-1385(20)30114-X pmid: 32345569 |
[13] |
Lanoue A, Burlat V, Henkes G J, et al. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytologist, 2010, 185(2):577-588.
doi: 10.1111/j.1469-8137.2009.03066.x pmid: 19878462 |
[14] | Bandara A Y, Weerasooriya D K, Bell T H, et al. Prospects of alleviating early planting‐associated cold susceptibility of soybean using microbes: New insights from microbiome analysis. Journal of Agronomy and Crop Science, 2021, 207(2):171-185. |
[15] | Schulz-Bohm K, Gerards S, Hundscheid M, et al. Calling from distance: attraction of soil bacteria by plant root volatiles. The ISME Journal, 2018, 12(5):1252-1262. |
[16] | 周倩, 黄安诚. 植物根系化合物调控微生物菌群研究进展. 植物生理学报, 2020, 56(11):2288-2295. |
[17] | Van Deynze A, Zamora P, Delaux P M, et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16(8):e2006352. |
[18] |
Liu H, Carvalhais L C, Crawford M, et al. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 2017, 8:2552.
doi: 10.3389/fmicb.2017.02552 pmid: 29312235 |
[19] | Wang G, Weng L Y, Huang Y X, et al. Microbiome-metabolome analysis directed isolation of rhizobacteria capable of enhancing salt tolerance of Sea Rice 86. Science of the Total Environment, 2022, 843:156817. |
[20] | Wang G, Li B W, Peng D L, et al. Combined application of H2S and a plant growth promoting strain JIL321 regulates photosynthetic efficacy, soil enzyme activity and growth-promotion in rice under salt stress. Microbiological Research, 2022, 256:126943. |
[21] | Shahid M, Shah A A, Basit F, et al. Achromobacter sp. FB-14 harboring ACC deaminase activity augmented rice growth by upregulating the expression of stress-responsive CIPK genes under salinity stress. Brazilian Journal of Microbiology, 2020, 51:719-728. |
[22] | Parvin S, Van Geel M, Yeasmin T, et al. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 2020, 30(4):431-444. |
[23] | Khan M, Asaf S, Khan A, et al. Plant growth‐promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biology, 2020, 22(5):850-862. |
[24] | Fatima T, Mishra I, Verma R, et al. Mechanisms of halotolerant plant growth promoting Alcaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress. 3 Biotech, 2020, 10(8):1-12. |
[25] |
Sultana S, Paul S C, Parveen S, et al. Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Canadian Journal of Microbiology, 2020, 66(2):144-160.
doi: 10.1139/cjm-2019-0323 pmid: 31714812 |
[26] | Yoolong S, Kruasuwan W, Thanh Phạm H T, et al. Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Scientific Reports, 2019, 9(1):1275. |
[27] |
Chatterjee P, Samaddar S, Niinemets Ü, et al. Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiological Research, 2018, 215:89-101.
doi: S0944-5013(18)30191-5 pmid: 30172313 |
[28] | Sarkar A, Pramanik K, Mitra S, et al. Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. Journal of Plant Physiology, 2018, 231:434-442. |
[29] | Misra S, Dixit V K, Khan M H, et al. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane- 1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiological Research, 2017, 205:25-34. |
[30] | Jogawat A, Vadassery J, Verma N, et al. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Scientific Reports, 2016, 6(1):36765. |
[31] |
Evelin H, Devi T S, Gupta S, et al. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Frontiers in Plant Science, 2019, 10:470.
doi: 10.3389/fpls.2019.00470 pmid: 31031793 |
[32] | Vahabi K, Dorcheh S K, Monajembashi S, et al. Stress promotes Arabidopsis-Piriformospora indica interaction. Plant Signaling & Behavior, 2016, 11(5):e1136763. |
[33] | Jogawat A, Saha S, Bakshi M, et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signaling & Behavior, 2013, 8(10):e26891. |
[34] | Fogliatto S, Serra F, Patrucco L, et al. Effect of different water salinity levels on the germination of imazamox-resistant and sensitive weedy rice and cultivated rice. Agronomy, 2019, 9(10):658. |
[35] | Lafi F F, Alam I, Geurts R, et al. Draft genome sequence of Enterobacter sp. Sa187, an endophytic bacterium isolated from the desert plant Indigofera argentea. Genome Announcements, 2017, 5(7):e01638-01616. |
[36] | Zélicourt A, Synek L, Saad M M, et al. Ethylene induced plant stress tolerance by Enterobacter sp. SA 187 is mediated by 2‐ keto‐4‐methylthiobutyric acid production. PLoS Genetics, 2018, 14(3):e1007273. |
[37] |
Van Zelm E, Zhang Y, Testerink C. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 2020, 71:403-433.
doi: 10.1146/annurev-arplant-050718-100005 pmid: 32167791 |
[38] | Hakim M, Juraimi A S, Hanafi M, et al. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. BioMed Research International, 2014, 2014:208584. |
[39] |
陈惠哲, 朱德峰, 林贤青, 等. 盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究. 植物生态学报, 2007, 31(5):937-945.
doi: 10.17521/cjpe.2007.0119 |
[40] | Wu H, Zhang X, Giraldo J P, et al. It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 2018, 431:1-17. |
[41] |
张永兰, 解莉楠. HKT1在植物耐盐机制中的研究进展. 生物技术通报, 2021, 37(6):213-244.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1379 |
[42] |
Platten J D, Cotsaftis O, Berthomieu P, et al. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 2006, 11(8):372-374.
pmid: 16809061 |
[43] |
Zhang H, Kim M-S, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 2008, 21(6):737-744.
doi: 10.1094/MPMI-21-6-0737 pmid: 18624638 |
[44] |
Abdelaziz M E, Kim D, Ali S, et al. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Science, 2017, 263:107-115.
doi: S0168-9452(17)30402-8 pmid: 28818365 |
[45] | Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53(1):247-273. |
[46] |
Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285(5431):1256-1258.
doi: 10.1126/science.285.5431.1256 pmid: 10455050 |
[47] |
Drozdowicz Y M, Rea P A. Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends in Plant Science, 2001, 6(5):206-211.
pmid: 11335173 |
[48] |
Mahajan S, Pandey G K, Tuteja N. Calcium-and salt-stress signaling in plants: shedding light on SOS pathway. Archives of Biochemistry and Biophysics, 2008, 471(2):146-158.
doi: 10.1016/j.abb.2008.01.010 pmid: 18241665 |
[49] |
Chen L, Liu Y P, Wu G W, et al. Beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 induces plant salt tolerance through spermidine production. Molecular Plant-Microbe Interactions, 2017, 30(5):423-432.
doi: 10.1094/MPMI-02-17-0027-R pmid: 28291380 |
[50] | 曲悦, 王姝瑶, 郝鑫, 等. 盐胁迫诱导植物交叉适应及其信号转导. 植物生理学报, 2022, 58(6):1045-1054. |
[51] | Xu N, Chu Y L, Chen H L, et al. Rice transcription factor OsMADS 25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging. PLoS Genetics, 2018, 14(10):e1007662. |
[52] |
Choudhury F K, Rivero R M, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 2017, 90(5):856-867.
doi: 10.1111/tpj.13299 pmid: 27801967 |
[53] |
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55:373-399.
pmid: 15377225 |
[54] | Estrada B, Aroca R, Barea J M, et al. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science, 2013, 201:42-51. |
[55] | Andrés-Barrao C, Alzubaidy H, Jalal R, et al. Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187- induced plant salt stress tolerance. Proceedings of the National Academy of Sciences, 2021, 118(46):e2107417118. |
[56] |
Kim S Y, Lim J H, Park M R, et al. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology, 2005, 38(2):218-224.
pmid: 15826500 |
[57] | Fatma M, Asgher M, Masood A, et al. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environmental and Experimental Botany, 2014, 107:55-63. |
[58] | 许智宏, 李家洋. 中国植物激素研究:过去,现在和未来. 植物学报, 2006, 23(5):433-442. |
[59] | 熊国胜, 李家洋, 王永红. 植物激素调控研究进展. 科学通报, 2009, 54(18):2718-2733. |
[60] |
Hedrich R, Shabala S. Stomata in a saline world. Current Opinion in Plant Biology, 2018, 46:87-95.
doi: S1369-5266(18)30045-1 pmid: 30138845 |
[61] |
Sah S K, Reddy K R, Li J. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 2016, 7:571.
doi: 10.3389/fpls.2016.00571 pmid: 27200044 |
[62] | Yang Y Q, Guo Y. Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 2018, 217(2):523-539. |
[63] | Lastochkina O, Aliniaeifard S, Garshina D, et al. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. Journal of Plant Physiology, 2021, 263:153462. |
[64] | Emenecker R J, Strader L C. Auxin-abscisic acid interactions in plant growth and development. Biomolecules, 2020, 10(2):281. |
[65] | Zhang S W, Gan Y T, Xu B L. Mechanisms of the IAA and ACC- deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology, 2019, 19(1):1-18. |
[66] |
Contreras-Cornejo H A, Macías-Rodríguez L, Alfaro-Cuevas R, et al. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Molecular Plant-Microbe Interactions, 2014, 27(6):503-514.
doi: 10.1094/MPMI-09-13-0265-R pmid: 24502519 |
[67] |
Kruasuwan W, Lohmaneeratana K, Munnoch J T, et al. Transcriptome landscapes of salt-susceptible rice cultivar IR29 associated with a plant growth promoting endophytic Streptomyces. Rice, 2023, 16(1):6.
doi: 10.1186/s12284-023-00622-7 pmid: 36739313 |
[68] | Baharudin N F, Osman N I. Plant development, stress responses, and secondary metabolism under ethylene regulation. Plant Stress, 2023, 7:100146. |
[69] | Carmen Orozco-Mosqueda M, Glick B R, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiological Research, 2020, 235:126439. |
[70] |
Considine P, Flynn N, Patching J. Ethylene production by soil microorganisms. Applied and Environmental Microbiology, 1977, 33(4):977-979.
doi: 10.1128/aem.33.4.977-979.1977 pmid: 869541 |
[71] |
Liu Y, Xun W, Chen L, et al. Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil. Computational and Structural Biotechnology Journal, 2022, 20:6543-6551.
doi: 10.1016/j.csbj.2022.11.046 pmid: 36467579 |
[72] | 许景钢, 孙涛, 李嵩. 我国微生物肥料的研发及其在农业生产中的应用. 作物杂志, 2016(1):1-6. |
[1] | 欧英卓, 赵晴, 顾怀应, 周宇阳, 刘长华, 孟丽君. 氯酸盐在水稻硝态氮研究中的应用现状[J]. 作物杂志, 2024, (4): 17 |
[2] | 袁帅, 何明娟, 崔璨, 韩羽, 喻鹏, 易镇邪. 早稻基施不同用量钙镁水滑石对湘南双季稻产量和稻米品质影响[J]. 作物杂志, 2024, (4): 113120 |
[3] | 周舟, 沈炘垭, 王俊, 刘立军. 控释肥与普通尿素组合对水稻产量、氮肥利用率和米质的影响[J]. 作物杂志, 2024, (4): 180187 |
[4] | 李虎, 吴子帅, 刘广林, 罗群昌, 陈传华, 朱其南. 不同栽培条件对水稻籽粒镉含量及主要性状的影响研究[J]. 作物杂志, 2024, (4): 203208 |
[5] | 陈洛, 朱稳, 李雯慧, 赵均良, 周玲艳, 杨武. 水稻白叶枯病抗性基因的研究及应用进展[J]. 作物杂志, 2024, (3): 17 |
[6] | 全成哲, 李淑芳, 李鹤南, 于维, 金京花. 吉林省73份审定水稻品种的表型性状遗传多样性研究[J]. 作物杂志, 2024, (3): 6475 |
[7] | 刘繁超, 方淑梅, 王庆燕, 王晗昕, 牛娟娟, 梁喜龙. 不同浓度外源氨基酸对水稻秧苗生长及相关生理指标的影响[J]. 作物杂志, 2024, (2): 7179 |
[8] | 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117125 |
[9] | 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193203 |
[10] | 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 6572 |
[11] | 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024, (1): 815 |
[12] | 谢昊, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 杨建昌, 顾骏飞. 不同栽培措施下水稻基肥氮素利用率的15N示踪分析[J]. 作物杂志, 2024, (1): 9096 |
[13] | 高作利, 姜帅臣, 刘雨佳, 徐智慧, 刘海峰. 适合延边地区种植的彩色水稻品种筛选[J]. 作物杂志, 2023, (6): 6268 |
[14] | 刘艳, 曲航, 邢月华, 王晓辉, 宫亮. 新型氮肥对水稻生长、氮肥利用率和经济效益的影响[J]. 作物杂志, 2023, (5): 110116 |
[15] | 胡锐, 胡香玉, 傅友强, 叶群欢, 潘俊峰, 梁开明, 李妹娟, 刘彦卓, 钟旭华. 氮肥运筹对水稻根系生长发育的影响及其与氮肥吸收利用的关系[J]. 作物杂志, 2023, (5): 179186 |
|