Crops ›› 2017, Vol. 33 ›› Issue (2): 51-58.doi: 10.16035/j.issn.1001-7283.2017.02.009

Previous Articles     Next Articles

Cloning and Sequence Analysis of GmWRI1a Gene Promoter in Soybean

Yan Li,Yang Qiang,Shao Yupeng,Li Dandan,Wang Zhikun,Li Wenbin   

  1. Northeast Agricultural University/Key Laboratory of Soybean Biology, Chinese Ministry of Education/Key Laboratory of Soybean Biology and Genetics Breeding,Chinese Agriculture Ministry,Harbin 150030,Heilongjiang,China
  • Received:2016-11-21 Revised:2017-02-26 Online:2017-04-15 Published:2018-08-26
  • Contact: Zhikun Wang,Wenbin Li

Abstract:

According to the Williams 82’s genomic sequences reported in the Phytozome, primers were designed by Primer Premier 5.0. The promoter product sequence of GmWRI1a gene was amplified by PCR method. The recombinant vectors pGM-T-pGmWRI1a and PBI121-pGmWRI1a were constructed. The positive clones were identified by PCR amplification and restriction enzyme digestion. The full length of the GmWRI1a promoter was 1 687bp. The promoter sequence contained the necessary initiation transcription sites, such as TATA-box,CTTA-box and multiple other cis-acting elements: light responsiveness element, gibberellin response element, cis-acting regulatory element related to meristem expression, drought-inducing elements, and others. Cloning and characterization of the GmWRI1a gene promoter will provide basis for the further study of regulation and functional analysis of GmWRI1a gene in soybean.

Key words: Promoter of GmWRI1a gene, Soybean, Sequence analysis, Cis-regulatory element

Fig.1

DNA extract result of Dongnong 47"

Fig.2

PCR results of GmWRI1a gene promoter"

Fig.3

PCR identify of pGM-T-pGmWRI1a recombinant plasmid"

Fig.4

Sequence comparison result of GmWRI1a gene promoter"

Fig.5

GmWRI1a gene promoter sequential analysis The possible cis-acting elements in the sequence is signed by frames; The black is transcriptional start site;start codon ATG is signed by the double underline"

Table 1

GmWRI1a gene promoter cis-form regulatory sequence position and function"

调控元件Regulatory sequence 位置Position 核心序列Core sequence 预测功能Function
ACE
797(+)
ACGTGGA
光应答元件
Cis-acting element involved in light responsiveness
AE-Box

176(+),
1278(+),
655(–)
AGAAAC

光响应模块
Part of a module for light response
ATC-motif
1227(–)
AGTAATCT
光应答元件
Part of a conserved DNA module involved in light responsiveness
CATT-motif
210(+)
GCATTC
光响应一部分
Part of a light responsive
GA-motif
835(–)
AAAGATGA
光响应元件
Part of a light responsive element
G-box
795(+),
796(–)
TGACGTGG
CACGTC
光反应调节元件
Cis-acting regulatory element involved in light responsiveness
调控元件Regulatory sequence 位置Position 核心序列Core sequence 预测功能Function
GT1-motif

674(+),
1056(+),
914(–)
GGTTAA

光反应元件
Light responsive element
CTA-box
1008(+)
GCCACT
表达分生组织相关
Cis-acting regulatory element related to meristem expression
P-Box
896(–)
CCTTTTG
赤霉素应答元件
Gibberellin-responsive element
GARE-motif
603(+),
1482(+)
AAACAGA
TCTGTTG
赤霉素响应元件
Gibberellin-responsive element
CE3
802(+)
GACGCGTGT
ABA和VP1响应元件
Cis-acting element involved in ABA and VP1 responsiveness
MBS
791(+)
TAACTG
MYB参与抗旱诱导结合位点
MYB binding site involved in drought-inducibility
Skn-1_motif
362(+),
664(+)
GTCAT
胚乳表达所需的调节元件
Cis-acting regulatory element required for endosperm expression
GCN4_motif

370(+),
1005(+),
818(+)
TGAGTCA

胚乳表达顺式调控元件
Cis-regulatory element involved in endosperm expression

Fig.6

PCR identify of pBI-pGmWRI1a recombinant plasmid"

Fig.7

Hind Ⅲ、XbaⅠenzyme identify of pBI-pGmWRI1a recombinant plasmid"

[1] Pabo C O, Sauer R T . Transcription factors structural families and principles of DNA recognition.Annual Review of Biochemistry. 1992,61:1053-1095.
doi: 10.1146/annurev.bi.61.070192.005201 pmid: 1497306
[2] 姜显光 . 植物油脂中脂肪酸的分析研究. 大连:辽宁师范大学, 2008.
doi: 10.7666/d.y1341481
[3] Durrett T P, Benning C, Ohlrogge J . Plant triacylglycerols as feedstocks for the production of biofuel. Plant Journal, 2008,54:593-607.
doi: 10.1111/j.1365-313X.2008.03442.x pmid: 18476866
[4] Thelen J J, Ohlrogge J B . Metabolic engineering of fatty acidbiosynthesis in plants. Metabolic Engineering, 2002,4(1):12-21.
doi: 10.1006/mben.2001.0204 pmid: 11800570
[5] Abogadallah G M, Nada R M, Malinowski R , et al. Overexpression of HARDY,an AP2/ERF gene from arabidopsis,improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta, 2011,233(6):1265-1276.
doi: 10.1007/s00425-011-1382-3
[6] Joo J, Choi H J, Lee Y H , et al. A transcriptional repressor of the ERF family confers drought tolerance to rice and regulates genes preferentially located on chromosome 11. Planta, 2013,238(1):155-170.
doi: 10.1007/s00425-013-1880-6
[7] Wei M, Que K, Vincent A , et al. Wrinkled1a ubiquitous regulator in oil accumulating tissues from arabidopsis embryos to oil palm Mesocarp. Plos One, 2013,8(7):e68887 .
doi: 10.1371/journal.pone.0068887
[8] O’Hara P, SlabasA R, Fawcett T . Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiology, 2002,129:310-320.
doi: 10.1104/pp.010956
[9] NapierJ A , GrahamA. Tailoring plant lipid composition:designer oilseeds come of age. Current Opinion in Plant Biology, 2010,13:330-337.
doi: 10.1016/j.pbi.2010.01.008 pmid: 20185359
[10] 韩志萍, 安利佳, 侯和胜 . AP2/EREBP转录因子的结构与功能.中国农学通报, 2006(3):33-38.
doi: 10.3969/j.issn.1000-6850.2006.03.009
[11] 默韶京 . 长穗偃麦草中AP2/EREBP类转录因子基因的克隆与功能验证. 保定:河北农业大学, 2011.
doi: 10.7666/d.y1897324
[12] Toshitsugu N, Kaoru S, Tatsuhito F , et al. Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiology, 2006,140(2):411-432.
doi: 10.1104/pp.105.073783 pmid: 16407444
[13] Weigel D . The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell, 1995,7(4):388-389.
doi: 10.2307/3870077 pmid: 7773013
[14] Moose S P, Sisco P H . Glossy15,an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes & Development, 1996,10(23):3018-3027.
doi: 10.1101/gad.10.23.3018 pmid: 8957002
[15] Gu Y Q, Wildermuth M C, Chakravarthy S , et al. Tomato transcription factors Pti4,Pti5 and Pti6 activate defense responses when expressed in arabidopsis. Plant Cell, 2002,14(4):817-831.
doi: 10.1105/tpc.000794
[16] 鲁亚萍, 刘风珍, 万勇善 . 花生转录因子WRI1基因特征的in silico分析.分子植物育种, 2012(3):363-370.
[17] 张经军 . 甘蓝型油菜(Brassica napus)WRI1同源基因克隆及功能初步分析. 石家庄:河北师范大学, 2007.
doi: 10.7666/d.y1099930
[18] 王志坤, 常健敏, 李文滨 . 大豆GmWRI1a基因克隆及生物信息学分析.东北农业大学学报, 2013(7):11-16.
doi: 10.3969/j.issn.1005-9369.2013.07.003
[19] Poxleitner M, Rogers S W, Lacey S A , et al. A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant Journal, 2006,47(6):917-933.
doi: 10.1111/tpj.2006.47.issue-6
[20] 王志坤, 常健敏, 李丹丹 , 等. 大豆GmWRI1a基因克隆及生物信息学分析. 东北农业大学学报, 2013,44(7):11-16.
doi: 10.3969/j.issn.1005-9369.2013.07.003
[21] Ohto M A, Floyd S K, Fischer R L , et al. Effects of APETALA2 on embryo,endosperm and seed coat development determine seed size in arabidopsis. Sexual Plant Reproduction, 2009,22(4):277-289.
doi: 10.1007/s00497-009-0116-1
[22] Kang M, Qian Z, Zhu D , et al. Characterization of micro-RNAs expression during maize seed development. BMC Genomics, 2012,13(1):360.
doi: 10.1186/1471-2164-13-360 pmid: 3468377
[23] 赵利锋, 柴团耀 . AP2/EREBP转录因子在植物发育和胁迫应答中的作用. 植物学报, 2008,25(1):89-101.
doi: 10.3969/j.issn.1674-3466.2008.01.013
[24] Thirugnanasambantham K, Durairaj S, Saravanan S , et al. Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Molecular Biology Reporter, 2015,33(3):1-11.
doi: 10.1007/s11105-014-0732-2
[25] 路静, 赵华燕, 何奕昆 , 等. 高等植物启动子及其应用研究进展. 自然科学进展, 2004,14(8):856-861.
doi: 10.3321/j.issn:1002-008X.2004.08.003
[26] Lau O S, Deng X W . Plant hormone signaling lightens up:integrators of light and hormones. Current Opinion in Plant Biology, 2010,13(5):571-577
doi: 10.1016/j.pbi.2010.07.001 pmid: 20739215
[27] Wu X L, Liu Z H, Hu Z H , et al. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. Journal of Integrative Plant Biology, 2014,56(6):582-593.
doi: 10.1111/jipb.v56.6
[28] Surokin L P, Chua N H . Binding sites for two novel phosphoproteins,3AF5 and 3AF3,are required for rhcS-3A expression, Plant Cell, 1992,4(4):473-483.
doi: 10.2307/3869448 pmid: 1498605
[29] 李丹丹, 闫丽, 常健敏 , 等. 大豆GmWRI1基因在糖、植物激素及盐胁迫下的表达分析.作物杂志, 2015(4):41-46.
doi: 10.16035/j.issn.1001-7283.2015.04.010
[30] Jurriaan T, Victor F, Brigitte M M . The multifaceted role of ABA in disease resistance. Trends in Plant Science, 2009,14(6):310-317.
doi: 10.1016/j.tplants.2009.03.006 pmid: 19443266
[31] 陈其军, 安瑞 . 通过同时激活依赖于ABA和不依赖于ABA的逆境胁迫信号转导途径改善拟南芥和烟草的抗逆性. 2004中国植物生理生态学学术研讨会论文摘要汇编, 2004.
[32] Baud S, Mendoza M S, To A , et al. WRINKLED1 specifies the regulatory action of LEAFYCOTYLEDON2 towards fatty acid metabolism during seed maturation in arabidopsis. Plant Journal for Cell & Molecular Biology, 2007,50(5):825-838.
[33] Mu J, Tan H, Zheng Q , et al. LEAFYCOTYLEDON1 is a key regulator of fatty acid biosynthesis in arabidopsis. Plant Physiology, 2008,148(2):1042-1054.
doi: 10.1104/pp.108.126342
[34] Yue J, Sun H, Zhang W , et al. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity. BMC Plant Biology, 2015,15(1):95.
doi: 10.1186/s12870-015-0472-y pmid: 25888209
[35] Andre C, Froehlich J, Moll M , et al. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in arabidopsis. Plant Cell, 2007,19(6):2006-2022.
doi: 10.1105/tpc.106.048629 pmid: 17557808
[1] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System [J]. Crops, 2018, 34(4): 114-120.
[2] Mingjun Zhang,Zhongfeng Li,Lili Yu,Jun Wang,Lijuan Qiu. Identification and Screening of Protein Subunit Variation Germplasm from Both Mutants and Natural Population in Soybean [J]. Crops, 2018, 34(3): 44-50.
[3] Jiani Zhu,Huiping Dai,Shuhe Wei,Genliang Jia,Dejing Chen,Jinjin Pei,Qing Zhang,Long Qiang. Effects of Applying Zn on the Growth and Zn Accumulation in Soybean at Flowering Stage [J]. Crops, 2018, 34(1): 152-155.
[4] Tianle Ma,Jianxin Zhang. Effects of Different Multiple Cropping Methods on Dry Matter Accumulation, Distribution and Yield of Summer Soybean [J]. Crops, 2018, 34(1): 156-159.
[5] Lina Li,Longguo Jin,Chuanxiao Xie,Changlin Liu. Determining Blind Samples of Transgenic Maize and Transgenic Soybean [J]. Crops, 2017, 33(6): 37-44.
[6] Xuechao Zhou,Surong Ding,Yunshan Wei,Yanfang Zhou,Xue Wei,Rina Na,Feng Li. Evaluation of Adaptability of Different Vegetable Soybean Cultivars (Lines) in Chifeng Area [J]. Crops, 2017, 33(3): 44-48.
[7] Guoyong Ren,Wei Li,Lifeng Zhang,Caijie Wang,Haiying Dai,Jinlong Wang,Ran Xu,Yanwei Zhang. The Resistance to Soybean Cyst Nematode Race 1 of Transgenic Soybean with hrf2 Encoding HarpinXooc [J]. Crops, 2017, 33(3): 49-53.
[8] Xuli Zhang,Baolong Xing,Guimei Wang,Lili Yin. Effects of Planting Density on Agronomic Traits, Economic Traits and Yield of Soybean in North of Shanxi Province [J]. Crops, 2017, 33(3): 127-131.
[9] Xiting Zhang,Liwei Cao,Shucai Lü,Guoxing Chen,Yongji Wang,Shuhan Yu,Zhenping Gong. Effects of Bulk Density on Nitrogen Absorption and Yield of Soybean on Black Soil [J]. Crops, 2017, 33(3): 132-137.
[10] Yixin Tian,Fengju Gao. The Response of Growth and Dry Matter Accumulation and Distribution of High Protein Soybean to Plant Density [J]. Crops, 2017, 33(2): 121-125.
[11] Yu Gao,Yanchao Liu,Shusen Shi,Juan Cui,Jinfeng Xiong. Review on Soybean Thrips in China [J]. Crops, 2017, 33(1): 8-13.
[12] Haiyan Li,Deli Cai,Jingsheng Chen,Yuxi Duan,Lijie Chen,Yingyu Shang. The Influence of Resistant and Susceptible Soybean Germplasm on Growth Dynamic Changes of Soybean Cyst Nematode Race 3(SCN3) [J]. Crops, 2017, 33(1): 144-149.
[13] Qianxu Zhao,Xianrong Yue,Yunsheng Xia,Naiming Zhang,Fuzhao Nian,Yunqiang Yang,Yulin Ma. Effects of Arbuscular Mycorrhizal Fungus Inoculation on Growth and Nitrogen Utilization of Intercropped Maize and Soybean in Purple Soil under Facilitated Condition [J]. Crops, 2016, 32(5): 94-100.
[14] Zhao Geng,Youbin Kong,Lili Zhao,Cui Liu,Hui Du,Xihuan Li,Caiying Zhang. Transformation of GmPHR1 and GmPAP4 Related to High Phosphorus Efficiency and Elite Germplasm Enhancement in Soybean (Glycine max) [J]. Crops, 2016, 32(3): 58-62.
[15] Haiping Zhang,Shufeng Wu,Zhi Wang. Inheritance of Resistance to Race 4 of Cyst Nematode in Soybean [J]. Crops, 2016, 32(3): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .