Crops ›› 2018, Vol. 34 ›› Issue (5): 137-143.doi: 10.16035/j.issn.1001-7283.2018.05.022

Previous Articles     Next Articles

Effects of Straw Incorporation Modes on Rice Photosynthesis, Dry Matter Accumulation and Nitrogen Uptake in Cool Region of Northeast China

Sui Yanghui1,2,Gao Jiping2,Liu Caihong2,3,Xu Zhengjin2,Wang Yanbo1,Zhao Haiyan1   

  1. 1 Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, China
    2 Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
    3 Jilin City Academy of Agricultural Sciences, Jilin 132101, Jilin, China
  • Received:2018-04-20 Online:2018-10-15 Published:2018-10-12
  • Contact: Zhengjin Xu,Yanbo Wang

Abstract:

To investigate the appropriate way of returning rice straw in the cool areas of northeast China, a field experiment was carry out to study the effects of straw incorporation modes on rice photosynthesis and dry matter accumulation. The results indicated that two methods of straw incorporation could improve the above-ground dry matter accumulation of rice under application of nitrogen fertilizer, especially in the mature stage carbonized straw had more dry matter accumulation compared with the straw returning directly. Above-ground dry matter accumulation increased under straw carbonized returning without nitrogen fertilization, but dry matter accumulation of the straw returning directly decreased compared with the control. Both methods of straw incorporation had a tendency to increase the utilization rate of N fertilizer. The nitrogen use efficiency of two methods of straw incorporation were 59% and 56%, respectively.

Key words: Straw carbonization returning, Straw incorporation, Photosynthetic characteristic, Dry matter accumulation, N fertilizer utilization

Fig.1

Effects of the straw incorporation methods on chlorophyll content in rice (2014) "

Table 1

The basis physical and chemical properties of straw and straw derived biochar"

材料Material 比表面积(m2/g)
Specific surface area
总孔体积(cm3/g)
Total pore volume
平均孔直径(nm)
Average pore diameter
pH 碳C
(mg/g)
氮N
(mg/g)
硫S
(mg/g)
钠Na
(mg/g)
镁Mg
(mg/g)
钾K
(mg/g)
秸秆Straw 1.0161 0.0067 26.38 5.84 384.63 13.63 3.32 1.18 2.50 14.47
秸秆炭Straw derived biochar 3.3505 0.0093 11.10 9.04 566.11 13.60 5.69 84.40 2.87 10.36

Fig.2

Changes of net photosynthetic rate in heading stage under the different straw incorporation methods (2014) Different small letters are significant difference at 0.05 level, the same below"

Fig.3

Changes of intercellular CO2 concentration in heading stage under the different straw incorporation methods (2014) "

Fig.4

Changes of stomatal conductance in heading stage under the different straw incorporation methods (2014) "

Fig.5

Changes of transpiration rate in heading stage under the different straw incorporation methods (2014) "

"

氮水平
Nitrogen level
处理
Treatment
分蘖期
Tillering stage
拔节期
Jointing stage
齐穗期
Heading stage
灌浆期
Grain filling stage
成熟期
Ripening stage
N CK 15.13±2.85aAB 37.92±5.02aA 52.34±7.75aA 69.89±14.28bAB 82.98±1.36bB
S 17.28±1.33aA 31.15±3.05abAB 58.06±4.37aA 83.78±1.91aA 89.97±2.45aAB
B 15.67±3.16aA 32.58±7.14abAB 54.67±1.09aA 78.23±2.67abA 92.58±4.44aA
N0 CK 9.35±0.68bC 25.65±2.80bcB 32.08±0.60bB 42.99±4.41cC 62.96±2.44cC
S 6.69±1.92bC 23.32±2.66cB 33.83±3.86bB 50.86±6.33cBC 60.83±2.14cC
B 10.05±0.79bBC 27.33±3.09bcB 38.12±4.64bB 55.93±4.28cBC 65.02±2.19cC

Fig.6

Above-ground dry matter weight response to straw incorporation methods in two consecutive yearsDifferent capital letters represent extremely significant difference at 0.01 level"

Table 3

Two-factor ANOVA for the effects of straw incorporation (R) and N fertilization (N) on above-ground dry matter weight and N content"

因子
Factor
地上部干物质量
Dry matter weight of
above-ground
地上部氮含量
N content of
above-ground
N N 88.51±5.04 280.81±22.66
N0 62.94±2.67 143.92±7.27
R CK 72.97±11.10 206.80±68.46
S 75.40±16.09 200.51±71.65
B 78.80±15.42 229.79±85.90
N ** **
R * **
N×R * *

Table 4

Effects of the straw incorporation methods on nitrogen uptake of the above-ground parts of rice in ripening stage in 2014 kg/hm2"

氮水平
Nitrogen level
处理
Treatment

Stem

Sheath

Leaf

Panicle
N CK 30.43a 41.64b 50.91b 145.54b
S 31.19a 24.15c 44.84b 165.56a
B 28.25b 51.98a 62.86a 165.09a
N0 CK 12.36d 11.32d 22.77c 98.62c
S 16.12c 11.33d 20.46c 87.37d
B 15.16c 13.17d 26.15c 96.93c

Fig.7

The N utilizing rate of rice under the different straw incorporation methods in 2014"

[1] 包雪梅, 张福锁, 马文奇 . 我国作物秸秆资源及养分循环研究. 中国农业科技导报, 2003,5(s):14-17.
[2] 慕永红, 曹书恒, 李珍 , 等. 水稻机械化秸秆直接还田现状及发展趋势. 黑龙江农业科学, 2000(5):42-43.
[3] Ma J, Li X L, Xu H , et al. Effects of nitrogen fertiliser and wheat straw application on CH4 and N2O emissions from a paddy rice field. Australian Journal of Soil Research, 2007,45(5):359-367.
doi: 10.1071/SR07039
[4] Shan J, Yan X Y . Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment, 2013,71:170-175.
doi: 10.1016/j.atmosenv.2013.02.009
[5] 秦越, 李彬彬, 武兰芳 . 不同耕作措施下秸秆还田土壤CO2排放与溶解性有机碳的动态变化及其关系. 农业环境科学学报, 2014,33(7):1442-1449.
[6] Laird D A, Brown R C, Amonette J E , et al. Review of the pyrolysis platform for producing bio-oil and biochar. Biofliels, Bioproducts and Biorefining, 2009,3(5):547-562.
doi: 10.1002/bbb.v3:5
[7] Novak J M, Busscher W J, Laird D L , et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 2009,174:105-112.
doi: 10.1097/SS.0b013e3181981d9a
[8] 陈温福, 张伟明, 孟军 . 农用生物炭研究进展与前景. 中国农业科学, 2013,46(16):3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003
[9] 袁艳文, 田宜水, 赵立欣 , 等. 生物炭应用研究进展. 可再生能源, 2012,30(9):45-49.
[10] 刘彩虹 . 秸秆炭化还田对稻田氮素利用及水稻产量的影响. 沈阳:沈阳农业大学, 2016.
[11] 陈金, 唐玉海, 尹燕枰 , 等. 秸秆还田条件下适量施氮对冬小麦氮素利用率及产量的影响. 作物学报, 2015,41(1):160-167.
doi: 10.3724/SP.J.1006.2015.00160
[12] 赵亚丽, 郭海斌, 薛志伟 , 等. 耕作方式与秸秆还田对冬小麦-夏玉米轮作系统中干物质生产和水分利用效率的影响. 作物学报, 2014,40(10):1797-1807.
doi: 10.3724/SP.J.1006.2014.01797
[13] 王浩, 焦晓燕, 王劲松 , 等. 生物炭对土壤水分特征及水胁迫条件下高粱生长的影响. 水土保持学报, 2015,29(2):253-257,287.
[14] 吴志庄, 高贵宾, 欧建德 , 等. 生物炭肥对毛竹林下三叶青叶绿素含量、光合与荧光特性的影响. 西北林学院学报, 2017,32(5):59-63.
[15] 程效义, 张伟明, 孟军 , 等. 玉米秸秆炭对玉米物质生产及产量形成特性的影响. 玉米科学, 2016,24(1):117-122,129.
[16] Sui Y, Gao J, Liu C , et al. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. Science of the Total Environment, 2016,544:203-210.
doi: 10.1016/j.scitotenv.2015.11.079
[17] 郝建华, 丁艳锋, 王强盛 , 等. 麦秸还田对水稻群体质量和土壤特性的影响. 南京农业大学学报, 2010,33(3):13-18.
[18] 杨思存, 霍琳, 王建成 . 秸秆还田的生化他感效应研究初报. 西北农业学报, 2005,14(1):52-56.
[19] Becker M, Ladha J K ,Ottow J C G . Nitrogen losses and lowland rice yield as affected by residue nitrogen release. Soil Science Society of America Journal, 1994,58:1660-1665.
doi: 10.2136/sssaj1994.03615995005800060012x
[20] Van Zwieten L, Kimber S, Morris S , et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 2010,327:235-246.
doi: 10.1007/s11104-009-0050-x
[21] Chan K Y, Van Zwieten L, Meszaros I , et al. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 2007,45:629-634.
doi: 10.1071/SR07109
[22] Genesio L, Miglietta F, Lugato E , et al. Surface albedo following biochar application in durum wheat. Environmental Research Letters, 2012,7:1-8.
[23] Kammann C I, Linsel S, Johannes W G , et al. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil, 2011,345:195-210.
doi: 10.1007/s11104-011-0771-5
[24] Chan K, Van Zwieten L, Meszaros I , et al. Using poultry litter biochars as soil amendments. Soil Research, 2008,46(5):437-444.
doi: 10.1071/SR08036
[25] Dempster D N, Jones D L, Murphy D V . Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Research, 2012,50:216-221.
doi: 10.1071/SR11316
[26] Dempster D N, Gleeson D B, Solaiman Z M , et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil, 2012,354:311-324.
doi: 10.1007/s11104-011-1067-5
[27] Taghizadeh-Toosi A, Clough T J, Sherlock R R , et al. Biochar adsorbed ammonia is bioavailable. Plant Soil, 2012,350:57-69.
doi: 10.1007/s11104-011-0870-3
[28] 潘玉才, 钱非凡, 黄卫红 , 等. 麦秸还田对水稻生长的影响. 上海农业学报, 2000,17(1):59-65.
[29] 杨长明, 杨林章 . 有机-无机肥配施对水稻剑叶光合特性的影响. 生态学杂志, 2003,22(1):1-4.
[30] 金鑫 . 秸秆还田对稻田土壤还原性物质和水稻生长的影响. 南京:南京农业大学, 2013.
[31] Sorensen L H . Organic matter and microbial biomass in a soil ncubated in the field for 20 years with 14C-labelled barley straw . Soil Biology Biochemistry, 1987,19:39-42.
doi: 10.1016/0038-0717(87)90123-4
[32] 刘世平, 聂新涛, 张洪程 , 等. 稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析. 农业工程学报, 2006,22(1):48-51.
[33] 詹其厚, 段建南, 贾宁凤 , 等. 长期施肥对黄土丘陵区土壤理化性质的影响. 水土保持学报, 2006,20(4):82-89.
[34] 刘玉学 . 生物质炭输入对土壤氮素流失及温室气体排放特性的影响. 杭州:浙江大学, 2011.
[35] 陈盈, 张满利, 刘宪平 , 等. 生物炭对水稻齐穗期叶绿素荧光参数及产量构成的影响. 作物杂志, 2016(3):94-98.
[1] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut [J]. Crops, 2018, 34(4): 102-105.
[2] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148.
[3] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[4] Yiran Ye, ,Bencai Sha,Wenxiang Wang,Hongda Ye,Shixian Geng,Jingjin Cheng,Meirong Hai. Effects of Different Fertilizers on Photosynthetic Characteristics of Winter Potato [J]. Crops, 2018, 34(3): 135-140.
[5] Jiao Zhang,Qi Wu,Yufei Zhou,Yitao Wang,Ruidong Zhang,Ruidong Huang. Effects of Drought and Rewatering at Seedling and Filling Stages on Photosynthetic Characteristics and Dry Matter Production of Sorghum [J]. Crops, 2018, 34(3): 148-154.
[6] Fang Chen,Yupeng Liu,Xiaoping Gu,Jiamin Hu,Fei Yu,Bo Zhang. Effects of Low Temperature on Photosynthetic Characteristics and Yield of Tea (Camellia sinensis L.) [J]. Crops, 2018, 34(3): 155-161.
[7] Mingcong Zhang,Yingce Zhan,Songyu He,Xijun Jin,Mengxue Wang,Chunyuan Ren,Yuxian Zhang. Effects of Different Nitrogen Fertilizer and Density Level on Dry Matter Accumulation and Yield of Adzuki Bean [J]. Crops, 2018, 34(1): 141-146.
[8] Haijun He,Xiaojuan Wang,Sirong Kou. Effects of Different Planting Density on Photosynthetic Characteristics and Yield of Maize in Dry Area [J]. Crops, 2017, 33(6): 91-95.
[9] Shuguang Wang,Yugang Shi,Huawei Shi,Yaping Cao,Daizhen Sun. Research on Relationship between Photosynthetic Characteristics and Drought Resistance in Spring Wheat [J]. Crops, 2017, 33(6): 23-29.
[10] Hongda Ye, ,Bencai Sha,Wenxiang Wang,Jia Liu,Yiran Ye,Meirong Hai. Effects of Altitude on Photosynthetic and Fluorescence Characteristics, and Antioxidant Properties on Solanum tuberosum L. [J]. Crops, 2017, 33(5): 93-99.
[11] Xiaoping Gu,Fei Yu,Ping Liang,Fang Chen. Effects of Different Cultivation Methods on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2017, 33(5): 66-72.
[12] Yu Gao,Shimao Cui,Yang Song,Shijun Sun. Effects of CO2 Enrichment on Growth and Photosynthesis Characteristics of Pepper Seedlings in Greenhouse [J]. Crops, 2017, 33(5): 80-84.
[13] Junhong Wang,Xuexia Pei,Jianyou Dang,Xueping Wu. Effects of Two Herbicides and Application Dosage on Growth and Antioxidase Activities of Flag Leaf in Wheat [J]. Crops, 2017, 33(3): 157-161.
[14] Yixin Tian,Fengju Gao. The Response of Growth and Dry Matter Accumulation and Distribution of High Protein Soybean to Plant Density [J]. Crops, 2017, 33(2): 121-125.
[15] Kaiyu Li,Zhanxiang Sun,Ning Yang,Jiaming Zheng,Zhichuang Zhu,Jibing Xiao,Liangshan Feng,Chuang Lu. Effects of Topdressing Different Forms of Nitrogen on Photosynthetic Characteristics and Yield of Maize with Drip Irrigation under Plastic Film [J]. Crops, 2017, 33(2): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .