Crops ›› 2020, Vol. 36 ›› Issue (2): 48-53.doi: 10.16035/j.issn.1001-7283.2020.02.008

Previous Articles     Next Articles

Identification and Principal Component Analysis of Maize Combinations Suitable for Mechanical Grain Harvesting

Wei Xiaoyi,Wang Jiamu,Ma Yi,Ma Junfeng,Hong Defeng,Wei Feng()   

  1. Xinxiang Academy of Agricultural Sciences of Henan Province, Xinxiang 453002, Henan, China
  • Received:2019-09-06 Revised:2019-12-04 Online:2020-04-15 Published:2020-04-13
  • Contact: Feng Wei E-mail:xxsnkyyms@126.com

Abstract:

Mechanical grain harvesting is the future development direction in maize. In this study, 16 maize cross combinations were used as materials, a total of 9 indexes of yield traits (yield, ear length, ear diameter, 100-kernel weight), agronomic traits (plant height and ear height) and mechanical harvesting related traits (grain moisture content, grain broken rate and impurity rate) were measured. The correlation analysis showed that there was a significant positive correlations between yield and ear length, ear diameter, 100-kernel weight; between plant height and ear height. In addition, a significant positive correlation between grain moisture content and grain broken rate was also found. Principal component analysis was performed on indexes (yield and yield related traits, grain moisture content, grain broken rate and impurity rate), combining the results of the yield comparison between artificial and mechanical grain harvesting, the research showed that Xindan 65, Xindan 58, Xindan 68, Xindan 88 were more suitable for mechanical grain harvesting.

Key words: Maize, Mechanical grain harvesting, Grain moisture content, Grain broken rate

Table 1

Number and name of 16 maize cross combinations"

编号Number 杂交组合Cross combination
H1 新单58(新美09×新4095)
H2 新4095×新4247
H3 新单88(新XF806×新69)
H4 新H1653×新913
H5 新01A3×新8280
H6 A9241×新3764
H7 新H1653×新LSA82641
H8 新单61(新美09×新01A3)
H9 新09美×新ANA-4567
H10 新3764×新4133
H11 新2115×新69
H12 新美026×新4364
H13 新单65(新美026×新4095)
H14 新单68(新美026×新69)
H15 新01A3×新4214
H16 郑单958(对照)

Table 2

The growth stage of 16 maize cross combinations d"

组合
Combination
抽雄期
Tasseling stage
吐丝期
Silking stage
散粉期
Flowering stage
成熟期
Mature stage
H1 51 54 53 102
H2 51 56 56 104
H3 52 55 55 102
H4 52 57 55 102
H5 52 56 55 102
H6 52 55 55 103
H7 52 57 55 102
H8 53 56 55 102
H9 53 54 54 103
H10 52 55 55 102
H11 51 55 54 102
H12 51 54 54 102
H13 50 54 53 101
H14 52 55 55 103
H15 52 56 55 104
H16 54 58 57 105

Table 3

Performance values of agronomic traits for 16 maize cross combinations"

性状Trait 平均值±标准差Mean±standard deviation 变异范围Range 变异系数Cofficient of variation (%)
产量Yield (kg/hm2) 7 990.7±1 367.1 6 094.1~11 035.7 17.1
穗长Ear length (cm) 18.3±1.2 16.7~20.9 6.7
穗粗Ear diameter (cm) 5.0±0.3 4.5~5.8 5.7
百粒重100-kernel weight (g) 33.4±1.9 30.4~36.8 5.8
籽粒含水率Grain moisture content (%) 27.4±2.6 24.3~35.6 9.6
籽粒破碎率Grain broken rate (%) 5.4±1.2 3.7~8.5 22.6
杂质率Impurity rate (%) 5.1±1.7 2.7~8.9 34.0
株高Plant height (cm) 261.4±31.5 228.1~365.4 12.1
穗位高Ear height (cm) 92.7±5.9 80.7~104.0 6.4

Table 4

Correlation analysis of agronomic traits for maize cross combinations"

性状
Trait
产量
Yield
穗长
Ear length
穗粗
Ear diameter
百粒重
100-kernel weight
籽粒含水率
Grain moisture content
籽粒破碎率
Grain broken rate
杂质率
Impurity rate
株高
Plant height
穗长Ear length -0.764**
穗粗Ear diameter -0.812** -0.446
百粒重100-kernel weight -0.797** -0.235 -0.193
籽粒含水率
Grain moisture content
-0.439 -0.077 -0.225 -0.245
籽粒破碎率
Grain broken rate
-0.491 -0.265 -0.045 -0.189 -0.614*
杂质率Impurity rate -0.452 -0.366 -0.247 -0.244 -0.300 0.231
株高Plant height -0.384 -0.307 -0.320 -0.306 -0.093 -0.317 -0.312
穗位高Ear height -0.092 -0.113 -0.017 -0.252 -0.475 0.316 -0.062 0.828**

Table 5

Component matrix and proportions of 8 indexes for maize cross combination"

指标Index 第1主成分
Principal component 1
第2主成分
Principal component 2
第3主成分
Principal component 3
产量Yield (kg/hm2) -0.835 0.078 -0.385
穗长Ear length (cm) 0.027 0.803 0.384
穗粗Ear diameter (cm) 0.308 0.705 0.279
百粒重100-kernel weight (g) 0.311 -0.587 0.707
籽粒干物质含量Kernel dry matter content (%) 0.759 0.281 -0.494
完整籽粒百分率Complete kernel ratio (%) 0.823 -0.248 -0.319
贡献率Proportion (%) 35.722 27.242 20.301
累计贡献率Accumulated contribution (%) 35.722 62.963 83.264

Table 6

The value of comprehensive evaluation of mechanical grain harvesting in different maize hybrid combinations and order based on the suitability"

编号
Number
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
第1主成分
Principal component 1
第2主成分
Principal component 2
第3主成分
Principal component 3
Y 综合评价排序
Order based on the suitability
H1 0.867 0.488 0.055 1.269 0.624 0.061 0.764 2
H2 -0.272 -1.473 0.569 -0.399 -1.884 0.628 -0.635 14
H3 0.537 0.151 0.029 0.787 0.194 0.032 0.409 4
H4 -0.464 0.488 -0.013 -0.679 0.624 -0.015 -0.090 8
H5 -0.132 -0.077 -1.360 -0.194 -0.098 -1.501 -0.481 12
H6 -1.788 1.547 -0.467 -2.618 1.978 -0.516 -0.601 13
H7 0.043 0.085 0.252 0.062 0.108 0.278 0.130 7
H8 0.488 0.368 -0.791 0.714 0.471 -0.873 0.247 5
H9 0.163 -0.501 1.214 0.238 -0.641 1.339 0.219 6
H10 0.179 -0.251 -0.418 0.263 -0.321 -0.461 -0.105 9
H11 0.029 0.096 -1.655 0.043 0.123 -1.826 -0.386 11
H12 -0.014 0.215 -1.135 -0.020 0.276 -1.253 -0.224 10
H13 1.601 2.083 1.511 2.343 2.663 1.667 2.283 1
H14 0.930 -1.063 1.161 1.361 -1.359 1.282 0.451 3
H15 0.397 -1.979 -0.491 0.581 -2.531 -0.542 -0.711 15
H16 -2.564 -0.179 1.540 -3.753 -0.229 1.699 -1.270 16

Fig.1

Comparison of yield between artificial and mechanical grain harvesting"

[1] 李树岩, 任丽伟, 刘天学 , 等. 黄淮海夏玉米籽粒机收适宜光温指标研究. 中国生态农业学报, 2018,26(8):1149-1158.
[2] 李少昆 . 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017,35(3):265-272.
[3] 佟屏亚 . 对玉米籽粒机械化收获的探讨. 农业技术与装备, 2015(4):4-6.
[4] 王振华, 鲁晓民, 张新 , 等. 我国玉米全程机械化育种目标浅析. 河南农业科学, 2011,40(11):1-3,21.
[5] 李淑芳, 张春宵, 路明 , 等. 玉米籽粒自然脱水速率研究进展. 分子植物育种, 2014,12(4):825-829.
[6] 易克传, 朱德文, 张新伟 , 等. 含水率对玉米籽粒机械化直接收获的影响. 中国农机化学报, 2016,37(11):78-80.
[7] 赫黎仁, 樊元, 赫哲欧 , 等. SPSS实用统计分析. 北京:中国水利水电出版社, 2003: 10-12.
[8] 张文霖 . 主成分分析在SPSS中的操作应用. 市场研究, 2005(12):31-34.
[9] 何亮 . 主成分分析在SPSS中的应用. 山西农业大学学报, 2007,6(5):20-22.
[10] 周颖, 顾万荣, 赵猛 , 等. 黑龙江省不同熟期春玉米品种茎秆特性及机收指标差异. 华北农学报, 2017,32(S1):140-146.
[11] 尚赏, 胡启国, 郭书亚 , 等. 种植密度对黄淮海夏玉米品种倒伏率与茎秆抗倒特性的影响. 山西农业科学, 2018,46(8):1282-1285.
[12] 柳枫贺 . 影响玉米机械收粒质量的主要因素研究. 石河子:石河子大学, 2013.
[13] 杨锦越, 宋碧, 罗英舰 , 等. 不同玉米品种机械粒收质量评价及其鉴定指标初步筛选. 河南农业科学, 2018,47(11):25-31.
[14] 李璐璐, 雷晓鹏, 谢润芝 , 等. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017,50(11):2044-2051.
[15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 玉米收获机械试验方法:GB/T-21961-2008. 北京:中国标准出版社, 2008.
[16] 冯健英, 许洛, 李中建 , 等. 宜机收玉米种质资源的创新与利用. 中国种业, 2018(12):34-36.
[1] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[2] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[3] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[4] Sun Ruidong,Zang Zhenyuan,Ci Jiabin,Yang Wei,Ren Xuejiao,Jiang Liangyu,Yang Weiguang. Identification of Resistance and Analysis of Resistance Source for Exserohilum turcicum in Maize Inbred Lines [J]. Crops, 2020, 36(2): 65-70.
[5] Li Zhongnan,Zhang Xiaohui,Wang Yueren,Zhang Yanhui,Wu Shenghui,Xu Zhengxue,Li Guangfa. Inheritance of Seed Dormancy in F1 of DH Lines of Maize [J]. Crops, 2020, 36(1): 194-198.
[6] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1 [J]. Crops, 2020, 36(1): 22-28.
[7] Xu Hanlin,Liu Yao,Yuan Xiaofeng,Pan Jie,Weng Qiaoyun,Lü Aizhi,Liu Yinghui. Projection of Climate Change on the Planting Distribution of Silage Maize in Northwest Hebei Province [J]. Crops, 2020, 36(1): 124-129.
[8] Si Leiyong,Xia Zhenqing,Jin Yan,Chen Guangzhou,Wang Guangfu,Lu Haidong,Xue Jiquan. Impacts of Different Mulching Patterns on Root-Shoot Growth of Spring Maize and Water Use Efficiency in Dry Land [J]. Crops, 2020, 36(1): 146-153.
[9] Bai Lanfang,Zhang Xiangqian,Wang Rui,Wang Ya'nan,Ye Xuesong,Wang Yufen,Li Juan,Zhang Dejian. Study on Photosynthetic Characteristics, Yield and Quality of Different Maize Varieties [J]. Crops, 2020, 36(1): 154-160.
[10] Tan Youbin. Suggestion and Discussion of Maize Breeding in West Africa Assistance Agricultural Project [J]. Crops, 2020, 36(1): 9-12.
[11] Chen Zongpei,Xue Jiaxin,Li Ben,Wang Guiyan. Response of Photosynthetic Characteristics and Canopy Micro-Environment to Planting Density and Row Spacing of Maize (Zea Mays L.) [J]. Crops, 2020, 36(1): 179-186.
[12] Diao Shengpeng,Gao Riping,Gao Yu,Ren Yongfeng,Zhao Peiyi,Yuan Wei,Gao Xuefeng. Effects of Straw Returning on Soil Hydrothermal and Yield of Maize in Loess Plateau of Inner Mongolia [J]. Crops, 2019, 35(6): 83-89.
[13] Zhuang Kezhang,Wu Ronghua,Zhang Chunyan,Xu Lihua,Xu Xiangbo,Ding Yi,Wang Zhennan. Effects of Density on Yield and Nutritional Value of Different Types of Silage Maize [J]. Crops, 2019, 35(6): 140-144.
[14] Hua Yuhui,Gao Zhiqiang. Hyperspectral Estimation of SPAD Values in Different Varieties of Autumn Maize [J]. Crops, 2019, 35(5): 173-179.
[15] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain [J]. Crops, 2019, 35(5): 143-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .