Crops ›› 2020, Vol. 36 ›› Issue (2): 60-64.doi: 10.16035/j.issn.1001-7283.2020.02.010

Previous Articles     Next Articles

AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties

Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua()   

  1. Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan, China
  • Received:2019-08-05 Revised:2019-11-21 Online:2020-04-15 Published:2020-04-13
  • Contact: Jihua Wu E-mail:wjihua122@163.com

Abstract:

The AMMI model was employed to analyze the pod yield data of regional trials for large-seeded peanut from 2015 to 2016 in north China. The results showed that the varieties, test sites, the variety×test site interaction and the interaction principal component axis (IPCA) reached at extremely significant level. There were significant differences in stability of the eight peanut varieties and resolution of the nineteen testing sites. Among the eight varieties, the stability parameter of Kainong 705 was the highest (Dg=32.9718) and that of Huayu 33 was the lowest (Dg=11.3287); Shanghua 11 and Zhengnonghua 15 were the varieties with high-yield and high-stability, Kainong 705 and Longhua 2 were the varieties with high-yield and low-stability, Huayu 33 was the variety with low-yield and high stability. As for the nineteen testing sites, Rizhao in Shandong and Luoyang in Henan had the best resolution, while Luohe in Henan and Guzhen in Anhui were of lower resolution.

Key words: AMMI model, Large-seeded peanut, Yield, Stability, Adaptability

Table 1

Average pod yield of testing peanut varieties in 2015-2016 kg/hm2"

品种Variety 2015 2016
G1 (CK) 5 207.58 4 769.17
G2 5 073.41 4 749.99
G3 5 747.23 5 400.39
G4 5 312.19 5 331.21
G5 5 514.17 5 071.06
G6 5 639.91 5 201.49
G7 5 319.20 5 312.29
G8 5 540.31 5 106.67

Table 2

Pod yield of peanut in 19 testing sites in 2015-2016 kg/hm2"

试验地点Testing site 2015 2016
E1 6 226.59 8 031.26
E2 3 637.69 3 457.97
E3 4 825.13 5 027.44
E4 5 733.26 5 708.31
E5 6 411.39 5 295.30
E6 3 603.86 4 299.11
E7 4 699.22 7 292.06
E8 4 558.84 3 983.55
E9 3 723.43 3 933.83
E10 6 147.49 3 971.59
E11 5 664.68 5 470.91
E12 5 932.54 4 619.40
E13 6 708.69 5 896.65
E14 4 808.74 4 908.56
E15 6 386.08 4 346.87
E16 6 960.00 3 696.32
E17 5 834.38 6 735.96
E18 6 430.29 5 014.39
E19 4 673.42 5 548.41

Table 3

Combined analysis of variance of pod yield of peanut varieties"

变异来源
Source of variation
df 平方和
Sum of squares
占总的平方和百分比(%)
Percentage of total sum of squares
均方
Mean square
F P
总变异Total variation 455 430 507 422.61 - 946 170.16 - -
处理Treatment 151 413 331 665.70 - 2 737 295.80 48.4484 0.0001
基因型Genotype (G) 7 18 856 776.40 4.38 2 693 825.20 47.6790 0.0001
环境Environment (E) 18 361 562 332.25 83.99 20 086 796.24 355.5235 0.0001
基因型×环境交互作用G×E interaction 126 32 912 557.05 7.65 261 210.77 4.6233 0.0001
误差Error 304 17 175 756.91 3.99 56 499.20 - -

Table 4

Analysis results of linear regression analysis and AMMI model"

模型
Model
变异来源
Source of variation
df 平方和
Sum of squares
占总的平方和百分比(%)
Percentage of total sum of squares
均方
Mean square
F P
线性回归
Linear regression
analysis
联合回归United regression 1 901 569.71 2.74 901 569.71 15.9572 0.0001
基因型回归Genotype regression 6 1 260 054.77 3.83 210 009.13 3.7170 0.0014
环境回归Environment regression 17 6 500 847.34 19.75 382 402.78 6.7683 0.0001
残差Residual 102 24 250 085.23 73.68 237 745.93 4.2080 0.0001
AMMI模型
AMMI model
IPCA1 24 12 366 546.90 37.57 515 272.79 4.4899 0.0001
IPCA2 22 8 509 099.24 25.85 386 777.24 3.3702 0.0001
IPCA3 20 5 151 121.87 15.65 257 556.09 2.2442 0.0020
残差Residual 60 6 885 789.04 20.93 114 763.15 - -

Fig.1

Biplot of AMMI between average pod yield and IPCA1"

Table 5

Scores and stability parameters of peanut varieties"

品种
Variety
IPCA1 IPCA2 IPCA3 Dg 位次
Order
G1(CK) -0.4380 -11.3192 0.1501 11.3287 8
G2 -2.3195 -25.6711 4.2104 26.1173 4
G3 -23.2418 20.0340 12.0663 32.9718 1
G4 -0.3688 8.6932 -31.5322 32.7107 2
G5 -19.4645 -13.3420 -1.2394 23.6307 5
G6 3.0022 13.5149 9.5819 16.8368 6
G7 30.8842 0.3913 7.6546 31.8211 3
G8 11.9462 7.6990 -0.8917 14.2401 7

Table 6

Scores and stability parameters of testing site"

试验地点
Testing site
IPCA1 IPCA2 IPCA3 De 位次
Order
E1 3.5204 -1.5893 1.2015 4.0451 18
E2 19.3002 -10.4954 4.9151 22.5124 3
E3 6.8929 13.8254 -6.7735 16.8681 6
E4 1.6036 -6.2567 6.1876 8.9445 16
E5 1.2227 7.6446 -11.9365 14.2273 9
E6 2.2034 8.7108 0.1289 8.9861 15
E7 27.0216 9.3446 4.9899 29.0239 2
E8 1.9683 -0.4205 -1.2237 2.3555 19
E9 2.4504 -3.1489 -16.5475 17.0217 5
E10 6.3001 7.3112 7.7440 12.3739 13
E11 -0.3787 -12.5732 7.5653 14.6786 8
E12 -12.0463 -7.3143 6.5748 15.5512 7
E13 -7.7215 3.2372 10.4448 13.3864 10
E14 -4.4749 -12.2357 0.4139 13.0349 12
E15 -9.9627 7.2712 -16.1485 20.3199 4
E16 -5.0310 -11.9311 -1.9425 13.0933 11
E17 -19.0959 20.3153 13.4921 30.9742 1
E18 -6.5048 -3.8598 -4.1415 8.6234 17
E19 -7.2680 -7.8354 -4.9443 11.7755 14
[1] 万书波 . 农业供给侧结构性改革背景下花生生产的若干问题. 花生学报, 2017,46(2):60-63,23.
[2] 国家统计局. 中国统计年鉴,2018.[2019-07-30]. .
[3] 王金彦, 潘丽娟, 杨庆利 , 等. 我国北方地区花生品种的遗传多样性分析. 中国农业科技导报, 2009,11(6):43-49.
[4] 万书波 . 中国花生栽培学. 上海:上海科学技术出版社, 2003.
[5] 王汉霞, 单福华, 田立平 , 等. 北部冬麦区冬小麦区试品种(系)的稳定性和适应性分析. 作物杂志, 2018(5):40-44.
[6] 唐启义 . DPS数据处理系统:实验设计、统计分析及数据挖掘. 北京:科学出版社, 2010.
[7] 董云, 王毅, 漆燕玲 , 等. 应用AMMI模型分析评判甘肃省春油菜区试品种的稳定性和适应性. 西北农业学报, 2010,19(7):74-78.
[8] Amare K B, Getahun A . Adaptability and stability analysis of groundnut genotypes using AMMI model and GGE-biplot. Journal of Crop Science and Biotechnology, 2017,20(5):343-349.
[9] 赵玉坤, 宁东贤, 杨秀丽 , 等. 基于AMMI模型的黑粒花生产量遗传稳定性分析. 山西农业科学, 2017,45(11):1740-1742,1746.
[10] 冀建华, 刘光荣, 李祖章 , 等. 基于AMMI模型评价长期定位施肥对双季稻总产量稳定性的影响. 中国农业科学, 2012,45(4):685-696.
[11] Karimizadeh R, Mohammadi M . AMMI adjustment for rainfed lentil yield trials in Iran. Bulgarian Journal of Agricultural Science, 2010,16(1):66-73.
[12] 宁东贤, 赵玉坤, 闫翠萍 , 等. 山西省南部花生品种产量稳定性的模型分析及评价. 作物杂志, 2017(3):39-43.
[13] 王志强, 刘声锋, 郭守金 , 等. 用AMMI双标图分析西瓜品种的产量稳定性及试点分辨力. 干旱地区农业研究, 2013,31(4):89-93.
[14] 王磊, 杨仕华, 谢芙贤 , 等. AMMI模型及其在作物区试数据分析中的应用. 应用基础与工程科学学报, 1997(1):39-46.
[15] 刘兆晔, 于经川, 孙晓辉 , 等. 7个小麦品种(系)高产稳产性分析. 山东农业科学, 2012,44(4):24-25,35.
[16] 伍玲, 朱华中 . 小麦品种区域试验精确度及精度分析. 西南农业学报, 2002(2):13-15.
[17] 郭敏杰, 邓丽, 任丽 , 等. 基于Genstat的GGE双标图评价花生区试中的品种及试点. 河北农业大学学报, 2017,40(6):9-13.
[18] 刘博, 卫玲, 樊云茜 , 等. 基于AMMI模型的黄淮海夏大豆国家区试产量分析. 中国农学通报, 2015,31(27):69-74.
[1] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[2] Shen Hongtao,Zhang Fusheng,Li Dong,Qiu Jianhua,Cai Xinghong,Qin Yubao. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[3] Wang Tianwen,Li Changzhong,Chen Guanghai. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[4] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[5] Chen Diwen,Zhou Wenling,Ao Junhua,Huang Ying,Jiang Yong,Han Xihong,Qin Yimin,Shen Hong. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[6] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[7] Fan Yegeng,Yan Haifeng,Chen Rongfa,Qiu Lihang,Zhou Huiwen,Huang Xing,Weng Mengling,Wu Jianming,Li Yangrui,Wei Shengman. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
[8] Liu Xin,Zhu Rong,Yang Mei,Liu Zhangyong. Screening of High-Yield Germplasms for Ratoon Rice and Analysis of High Yield Composition [J]. Crops, 2020, 36(2): 28-33.
[9] Yang Zhichang,Shen Tao,Luo Zhuo,Peng Zhi,Hu Yuqian,Zi Tao,Xiong Tinghao,Song Haixing. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[10] Chen Tianxin,Wang Yanjie,Zhang Yan,Chang Xuhong,Tao Zhiqiang,Wang Demei,Yang Yushuang,Zhu Yingjie,Liu Akang,Shi Shubing,Zhao Guangcai. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[11] Zhang Bo,Gao Tiantian,Cheng Hongbo,Li Rui,Chai Yuwei,Li Yawei,Chai Shouxi. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[12] Jing Peipei,Ren Hongru,Yang Hongjian,Dai Qigen. Effects of Saline Stress on Leaf Photosynthesis Characteristics and Grain Yield of Two Rice Cultivars (Lines) [J]. Crops, 2020, 36(1): 67-75.
[13] Huang Yinling,Lei Zhongshun,Zheng Tao,Suo Xinxia. Effects of Different Nitrogen Concentrations on Yield and Benefit of Winter Wheat and Soil Physical and Chemical Properties [J]. Crops, 2020, 36(1): 130-135.
[14] Zhang Yongqiang,Qi Xiaoxiao,Zhang Lu,Dong Huiyun,Chen Chuanxin, Sailihan·Sai,Xue Lihua,Chen Xingwu,Lei Junjie. Effects of Nitrogen Management on Leaf Photosynthetic Characteristics and Yield of Winter Wheat under Drip Irrigation [J]. Crops, 2020, 36(1): 141-145.
[15] Liu Meiju,Li Jiangzhou,Ji Sigui,Fan Miaomiao,Gu Xinghui,Zhang Limeng,Zhang Jinwei,Qu Xing,Zhou Wenbing,Lin Shan. Evaluation of Effect of Biochar on Tobacco Yield and Nitrogen Use Efficiency in Mountain Slope Areas [J]. Crops, 2020, 36(1): 89-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .