Crops ›› 2022, Vol. 38 ›› Issue (5): 241-248.doi: 10.16035/j.issn.1001-7283.2022.05.035

Previous Articles     Next Articles

Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China

Pan Junfeng(), Liu Yanzhuo(), Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua(), Li Meijuan, Hu Rui   

  1. Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, Guangdong, China
  • Received:2021-07-19 Revised:2021-08-13 Online:2022-10-15 Published:2022-10-19

Abstract:

Short-term and long-term experiments were conducted to determine the effects of phosphorus (P) fertilizer reduction on rice yield and phosphorus utilization. In the short-term experiment, three treatments, including normal P application (P1), half-dosage P application as basal dressing (P2), half-dosage P application with 50% as basal dressing and 50% as panicle fertilizer (P3), were established in an early and a late cropping season, conventional rice Yuejingsimiao 2 and hybrid rice Jingliangyouhuazhan were used as materials. In the long-term experiment, two treatments of no P application (M0) and normal P application (M1) were set up for nine consecutive years (comprising 18 seasons). Results from the short-term experiment indicated that two P reduction had no significant effect on grain yield, accumulation and translocation of dry matter, P accumulation and utilization. Among three treatments, no significant difference existed in the total and soluble P contents in the soil or in surface water. The P surplus and deficit rate were 8.7%, -35.3% and -31.8% for P1, P2 and P3 treatments, with P1 treatment achieving P apparent balance in the soil. In the long-term experiment, the relative yield under M0 treatment displayed a gradual declining trend across cropping seasons. However, the yields were comparable between two treatments in the six first seasons of three years. It could be concluded that short-term P reduction for three years would do no harm to grain yield and could reduce P loss from paddy soil in these fields with low to medium level of P content. Basal dressing of P fertilizer with half dosage would be better for achieving benefits in both grain yield and environmental protection.

Key words: Double cropping rice, Yield, Phosphorus utilization efficiency, Phosphorus balance

Table 1

Meteorological conditions from transplanting to maturity for short-term experiments"

生长阶段
Growth period
2016年晚季Late season in 2016 2017年早季Early season in 2017
日均气温
Average daily
temperature
(℃)
日均最高温
The highest
average daily
temperature
(℃)
降水量
Rainfall
(mm)
相对湿度
Relative
humidity
(%)
总辐射
平均值
Total
radiation mean
[MJ/(m2∙d)]
日均气温
Average daily
temperature
(℃)
日均最高温
The highest
average daily
temperature
(℃)
降水量
Rainfall
(mm)
相对湿度
Relative
humidity
(%)
总辐射
平均值
Total
radiation mean
[MJ/(m2∙d)]
移栽-穗分化始期
TR-PI
28.7 32.8 136.4 83.6 15.2 23.9 27.9 517.4 89.7 9.9
穗分化始期-抽穗期
PI-HD
27.0 31.5 132.8 81.9 15.5 26.8 31.1 566.6 89.2 13.4
抽穗期-成熟期
HD-MA
23.6 27.9 134.4 81.1 13.0 27.8 32.3 301.0 89.1 16.0

Table 2

Time and amount of P fertilizer application under different treatments"

生长阶段
Growth stage
移栽后天数Days after transplanting (d) 施磷量Amount of P application (kg P2O5/hm2)
早稻Early season 晚稻Late season P1 P2 P3 M1a
基肥Basal dressing -1 -1 45 22.5 11.25 45/27
穗分化始期PI 40 35 11.25
合计Total 45 22.5 22.50 45/27

Table 3

Effects of short-term P fertilizer treatments on grain yield and its components"

处理
Treatment
产量
Yield (t/hm2)
有效穗数
Effective
panicles (m2)
每穗颖花数
Spikelets per
panicle
单位面积颖花数
Spikelets per unit
area (×103/m2)
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
收获
指数
HI
年份Year (Y)
2016 6.83a 266.9a 177.5a 47.27a 72.33a 22.46a 0.53a
2017 5.84b 263.5a 166.9b 43.82b 64.06b 21.13b 0.41b
磷肥处理Phosphorus (P)
P1 6.32a 259.6b 173.9a 45.02a 67.98a 21.69a 0.47a
P2 6.33a 265.6ab 171.5a 45.49a 69.43a 21.76a 0.48a
P3 6.35a 270.5a 171.2a 46.12a 67.18a 21.94a 0.47a
品种Variety (V)
YJSM2 5.88b 272.5a 160.42b 43.67b 69.29a 21.87a 0.47a
JLYHZ 6.78a 257.9b 184.03a 47.42a 67.10a 21.72a 0.47a
Y×V ns ns ** ** ** ** **
Y×P ns ns ns ns ns ns ns
V×P * ns ns ns ns ns ns
Y×P×V ns ns ns ns ns ns ns

Table 4

Effects of P fertilizer management on uptake, use efficiency and harvest index of phosphorus in 2016"

处理
Treatment
磷积累量P accumulation (kg/hm2) 磷籽粒生产效率
PUEg (kg/kg)
磷干物质生产效率
PUEb (kg/kg)
磷收获指数
PHI
PI HD MA PI-HD HD-MA
磷肥处理Phosphorus (P)
P1 7.6a 22.0a 31.8a 14.3a 9.8a 216.9a 387.5a 0.791a
P2 6.4a 21.8a 31.0a 15.4a 9.2a 222.6a 404.6a 0.817a
P3 6.4a 21.9a 29.7a 15.5a 7.9a 230.1a 426.4a 0.808a
品种Variety (V)
YJSM2 7.3a 21.1a 31.4a 13.8b 10.3a 204.7b 380.9b 0.817a
JLYHZ 6.3b 22.7a 30.3a 16.4a 7.6a 241.7a 431.5a 0.794a
P ns ns ns ns ns ns ns ns
V * ns ns * ns ** ** ns
P×V ns * ns ns ns ns ns ns

Table 5

Effects of different P fertilizer management on dry matter accumulation and transportation"

处理
Treatment
生物量Biomass (t/hm2)
穗分化―抽穗期
PI-HD
抽穗―成熟期
HD-MA
物质转运量
DMT
总干物质量
TDW
年份Year (Y)
2016 6.68a 3.53a 1.58b 12.41a
2017 6.99a 1.63b 4.16a 12.08a
磷肥处理Phosphorus (P)
P1 6.76a 2.46a 2.94a 12.15a
P2 6.79a 2.64a 2.84a 12.26a
P3 6.95a 2.64a 2.85a 12.35a
品种Variety (V)
YJSM2 6.12b 2.62a 2.43b 11.65b
JLYHZ 7.54a 2.53b 3.31a 12.85a
Y×V ns ns ns ns
Y×P ns ns ns ns
V×P ns ns ns ns
Y×P×V ** * * ns

Fig.1

Effects of various P fertilizer managements on total phosphorus and available phosphorus content in upper-level soil For a given year, different letters indicate significant differences among different treatments by LSD test (P < 0.05), the same below"

Fig.2

Variation of total P and available P content in the surface water under various P fertilizer managements"

Table 6

Input, output and balance of phosphorous under different treatments in 2016"

处理
Treatment
投入量
Input (kg/hm2)
输出量
Output (kg/hm2)
盈亏量
Amount of surplus and deficit (kg/hm2)
盈亏率
Rate of surplus and deficit (%)
输入/输出
Input/output
磷肥Phosphorus (P)
P1 27.1a 25.2a 1.9a 8.7a 1.1a
P2 16.2b 25.4a -9.2b -35.3b 0.6b
P3 16.3b 24.0a -7.6b -31.8b 0.7b
品种Variety (V)
YJSM2 19.6a 25.6a -6.0a -22.6a 0.8a
JLYHZ 20.1a 24.0a -3.9a -16.3a 0.8a
P ** ns ** ** **
V ns ns ns ns ns
P×V ns ns ns ns ns

Fig.3

Changes of relative yield under long-term experiment"

[1] 国家统计局. 2019中国统计年鉴. 北京: 中国统计出版社, 2019:435-449.
[2] Richardson A E, Lynch J P, Ryan P R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011, 349:121-156.
doi: 10.1007/s11104-011-0950-4
[3] Evenson R E, Gollin D. Assessing the impact of the green revolution,1960 to 2000. Science, 2003, 300(5620):758-762.
pmid: 12730592
[4] Fageria N K, Santos A B, Heinemann A B. Lowland rice genotypes evaluation for phosphorus use efficiency in tropical lowland. Journal of Plant Nutrition, 2011, 34(8):1087-1095.
doi: 10.1080/01904167.2011.558153
[5] Song T, Xu F, Yuan W, et al. Combining alternate wetting and drying irrigation with reduced phosphorus fertilizer application reduces water use and promotes phosphorus use efficiency without yield loss in rice plants. Agricultural Water Management, 2019, 20(223):105686.
[6] 武红亮, 王士超, 闫志浩, 等. 近30年我国典型水稻土肥力演变特征. 植物营养与肥料学报, 2018, 24(6):1416-1424.
[7] 曾招兵, 曾思坚, 汤建东, 等. 广东省耕地土壤有效磷时空变化特征及影响因素分析. 生态环境学报, 2014, 23(3):444-451.
[8] 林兰稳, 朱立安, 曾清苹. 广东省农业面源污染时空变化及其防控对策. 生态环境学报, 2020, 29(6):1245-1250.
[9] 区惠平, 周柳强, 黄美福, 等. 不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估. 植物营养与肥料学报, 2016, 22(1):40-47.
[10] Correl D L. The role of phosphorus in the eutrophication of receiving waters:a review. Journal of Environmental Quality, 1998, 27(2):261-266.
[11] 李寿田, 周健民, 王火焰, 等. 不同土壤磷的固定特征及磷释放量和释放率的研究. 土壤学报, 2003, 40(6):908-914.
[12] 刘兆德, 虞孝感, 王志宪. 太湖流域水环境污染现状与治理的新建议. 自然资源学报, 2003(4):467-474.
[13] 广东省水利厅. 2008广东省水资源公报:江河湖库水体质量. (2009-12-02) [2021-08-05]. http://slt.gd.gov.cn/szyzt_9009/content/post.912595.html .
[14] 李卫华, 范平, 黄东风, 等. 稻田氮磷面源污染现状、损失途径及其防治措施研究. 江西农业学报, 2011, 23(8):118-123.
[15] 龚海青, 张敬智, 陈晨, 等. 磷肥后移与减量对水稻磷素利用效率的影响. 中国农业大学学报, 2017, 22(5):144-152.
[16] Wang K, Cui K H, Liu G L, et al. Low straw phosphorus concentration is beneficial for high phosphorus use efficiency for grain production in rice recombinant inbred lines. Field Crops Research, 2017, 203:65-73.
doi: 10.1016/j.fcr.2016.12.017
[17] 郭再华, 贺立源, 徐才国. 磷水平对不同耐低磷水稻苗根系生长及氮、磷、钾吸收的影响. 应用与环境生物学报, 2006, 12(4):449-452.
[18] 李鹏, 张敬智, 魏亚, 等. 配方施肥及磷肥后移对单季稻磷素利用效率、产量和经济效益的影响. 中国水稻科学, 2016, 30(1):85-92.
doi: 10.16819/j.1001-7216.2016.5094
[19] 简红忠, 杨小敏, 王琳, 等. 磷肥施用对汉中盆地水稻生长,肥料利用率及土壤磷素平衡的影响. 陕西农业科学, 2019, 65(10):62-65.
[20] 易均, 谢桂先, 刘强, 等. 磷肥减施对双季稻生长和产量及磷肥利用率的影响. 湖南农业大学学报(自然科学版), 2016, 42(2):197-201.
[21] 石敦杰, 杨兰, 荣湘民, 等. 控释氮肥和氮磷减量对水稻产量及田面水氮磷流失的影响. 江苏农业科学, 2018, 46(11):44-47.
[22] 广东省土壤普查办公室. 广东土壤. 北京: 科学出版社, 1993.
[23] 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011, 44(20):4207-4229.
[24] Pan J F, Liu Y Z, Zhong X H, et al. Grain yield,water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agricultural Water Management, 2017, 184:191-200.
doi: 10.1016/j.agwat.2017.01.013
[25] 徐明岗, 梁国庆, 张夫道. 中国土壤肥力演变. 北京: 中国农业科学技术出版社, 2006.
[26] 黄继川, 彭智平, 徐培智, 等. 广东省水稻土有机质和氮、磷、钾肥力调查. 广东农业科学, 2014, 41(6):70-73.
[27] 谢学俭, 冉炜, 沈其荣. 淹水条件下水稻田中磷的淋溶研究. 土壤, 2003, 35(6):506-509.
[28] Liang K M, Zhong X H, Pan J F, et al. Reducing nitrogen surplus and environmental losses by optimized nitrogen and water management in double rice cropping system of South China. Agriculture Ecosystems and Environment, 2019, 286:106680.
doi: 10.1016/j.agee.2019.106680
[1] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[2] Wen Rui, Chen Qianwu, Zhao Yajie, Jia Yiming, Lu Xudong, Zhang Jihong, Li Huanchun, Zhao Peiyi, Zhang Yonghu. Study on Water Temperature Effects and Water Use Efficiency of Paddy Field under Different Plastic Film Mulching Planting Patterns in Arid Area of Loess Plateau in Northwest China [J]. Crops, 2022, 38(6): 111-117.
[3] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[4] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[5] Qin Meng, Cui Shize, He Xiaodong, Zhai Lingxia, Tao Bo, Wang Zhaojun, Zhao Haicheng, Li Hongyu, Zheng Guiping, Liu Lihua. Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients [J]. Crops, 2022, 38(6): 159-166.
[6] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[7] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[8] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[9] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[10] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[11] Shi Guanyan, Wang Juanfei, Ma Huifang, Zhao Xiongwei. Correlation and Regression Analysis between Yield and Main Agronomic Traits in Foxtail Millet Hybrids [J]. Crops, 2022, 38(6): 82-87.
[12] Zhao Bin, Ji Changhao, Sun Hao, Zhu Bin, Wang Rui, Chen Xiaodong. Comprehensive Assessment of the Yield and Quality of Forage and Grain among Multi-Rowed Barley Lines [J]. Crops, 2022, 38(6): 93-97.
[13] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[14] Feng Changhui, Jiao Chunhai, Zhang Youchang, Bie Shu, Qin Hongde, Wang Qiongshan, Zhang Jiaohai, Wang Xiaogang, Xia Songbo, Lan Jiayang, Chen Quanqiu. Genetic Analysis for Yield and Fiber Quality Traits in Upland Cotton Based on Partial NCII Mating Design [J]. Crops, 2022, 38(5): 13-21.
[15] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[5] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .
[6] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review[J]. Crops, 2018, 34(4): 20 -27 .
[7] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[8] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[9] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane[J]. Crops, 2018, 34(4): 53 -61 .
[10] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .